Transportation Modeling Forum

June 10, 2015
Forum Agenda

- Network Maintenance
- Dynamic Traffic Assignment
- ABM / Active Transportation Model Update
Network Maintenance

Mike Calandra
mca@sandag.org

Tom King
tki@sandag.org
Network Maintenance

- **TCOV:** The master GIS network layer
 - Current and future technology
 - Related geographies

- **Network editing**
 - Geometrics
 - Attributes
 - Transit

- **Project control:** Extract, Transfer and Load

- **Network review**
Network Maintenance

- **GIS technology**
 - Existing system uses ArcINFO
 - Upgrade to ArcGIS on-hold

- **Related geographies**
 - Parcels
 - Master Geographic Reference Areas (MGRA)
 - Traffic Analysis Zones (TAZ)
 - Jurisdictions and Districts
 - Census Blocks and Tracts
Network Maintenance

- **Geographic dimensions**
 - 45,000+ links
 - 23,002 MGRAs
 - 4,996 TAZs
 - 12 External cordon zones
 - 10 Network facility types
 - 2,500 Transit Access Points (TAPs)
 - 7 Transit modes
 - 3 Transit access modes
 - 3 Truck classes
Network Maintenance

- **Network features**
 - Original source: SanGIS *roadg* layer
 - Grade separated facilities had to be ‘unsplit’
 - Aerial imagery used for alignments and newly constructed roadways
 - Future planned roads added via General Plans
 - TCOV attributes
 - Bi-directional link attributes
 - Node attributes
 - Linear referencing
 - Link costs
 - Project phasing and control
 - Turn prohibitions
Network Maintenance

Link attributes
- Functional classification
- Posted speed limit
- Mid-block lanes
- Intersection approach lanes
- Intersection control type
- Median type
- Link operation type
- Tolls
- 1-way vs 2-way

Node attributes
- Intersection control type
- Z-Coordinates
Network Maintenance

- Custom network editing menu system
Network Maintenance

- Intersection approaches
Network Maintenance

- Intersection controls

- Ramp Meter
- Traffic Signal
- Rail Crossing
- All-way Stop
- Two-way Stop
Network Maintenance

- **Turn prohibitors**
 - Adheres to signage
 - Prevents unrealistic movements around the network
Network Maintenance

- **Transit network**
 - Linear Referencing System (Dynamic Segmentation) used to code routes on top of highway network links

- **Transit modes**

- **Transit network editing**

- **Transit routes, schedules and stations**
Transit Ride Modes

- Commuter / High Speed Rail
- Light Rail / Streetcar
- Freeway Rapid
- Arterial Rapid
- Premium Express
- Express
- Local
Route 929 – 2010 Configuration
Stop Coding
Other Network Edits

- Park and Ride Lots
- Station Elevation
- Walk Barriers/Walkable Areas (4 Step)
- Walk Network (ABM)
- Fares/COASTER Fare Zones
Transit Network Build

- Transit network control by “Headways” file
 - Grouping routes into a common year/scenario
 - Headways file tells the transit network build program which routes, configurations, and frequencies to use
Highway Network Maintenance

- **Project control**
 - Grouping links in a common project
 - External project list treats each project like a light switch

- **Row** = Project
- **Column** = Network Scenario

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>527 I5:</td>
<td>@ Old Town Ave & Washington Ave, reconfig ICs</td>
<td>2050</td>
<td>2030</td>
<td>9999</td>
<td>2030</td>
<td>9999</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
</tr>
<tr>
<td>528 I5:</td>
<td>Harbor Dr, Airport access improvement</td>
<td>2030</td>
<td>2030</td>
<td>9999</td>
<td>2030</td>
<td>9999</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
<td>2030</td>
</tr>
<tr>
<td>529 I5:</td>
<td>Pacific Hwy, NF Ramps</td>
<td>2050</td>
<td>2030</td>
<td>9999</td>
<td>2030</td>
<td>9999</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
</tr>
<tr>
<td>530 I5:</td>
<td>Bay Marina Dr-SR54, ramp improvements</td>
<td>2050</td>
<td>2030</td>
<td>9999</td>
<td>2030</td>
<td>9999</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
</tr>
<tr>
<td>531 I5:</td>
<td>First Ave/Hawthorn IC, reconfigure</td>
<td>2050</td>
<td>2030</td>
<td>9999</td>
<td>2030</td>
<td>9999</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
</tr>
<tr>
<td>532 I5:</td>
<td>CDCC Dwn Ramp system North Segment</td>
<td>2050</td>
<td>2030</td>
<td>9999</td>
<td>2030</td>
<td>9999</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
</tr>
<tr>
<td>533 I5:</td>
<td>CDCC Dwn Ramp system South Segment</td>
<td>9999</td>
<td>9999</td>
<td>9999</td>
<td>9999</td>
<td>9999</td>
<td>9999</td>
<td>9999</td>
<td>9999</td>
<td>9999</td>
</tr>
<tr>
<td>534 I5:</td>
<td>I5/I8 IC, Rosecrans St off ramp</td>
<td>2050</td>
<td>2030</td>
<td>9999</td>
<td>2030</td>
<td>9999</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
<td>2050</td>
</tr>
<tr>
<td>535 I5:</td>
<td>Pacific Hwy, Airport access improvement</td>
<td>9999</td>
<td>2030</td>
<td>9999</td>
<td>2030</td>
<td>9999</td>
<td>9999</td>
<td>9999</td>
<td>9999</td>
<td>9999</td>
</tr>
<tr>
<td>536 I5:</td>
<td>Barnett Ave, Ramp</td>
<td>9999</td>
<td>2030</td>
<td>9999</td>
<td>2030</td>
<td>9999</td>
<td>9999</td>
<td>9999</td>
<td>9999</td>
<td>9999</td>
</tr>
</tbody>
</table>
Network Maintenance

- Project control
 - Used for nodes and links
 - Used to add, delete, or upgrade projects
Network Maintenance

- Project control
 - Link and node project phasing
Network Maintenance

- **Project control: Extract, Transfer and Load**
 - TCOV includes 20+ years of actual and machinated link-level projects
 - Post-editing scripts
 - *Postarc* processed edits made in TCOV
 - *Tchc* extracts links defined by the project list into a HWYCOV2
 - *Tctr* extracts transit routes defined by headways into a TRCOV

Work performed in a ‘covs’ folder with all GIS layers Work performed in a specific model scenario folder
Network Maintenance

- Local jurisdiction network review
 - Current and future-year networks are reviewed to ensure consistency with Circulation Elements
Network Maintenance

- Network Segway

Regional MACRO Network → Regional DTA Network

Link/Node-Based Network → Lane/Trajectory-Based Network
DYNAMIC TRAFFIC ASSIGNMENT

RICK CURRY

Rick.Curry@sandag.org
Project Introduction

• Develop Region-Wide DTA Model for San Diego
• Integrate DTA Model with the SANDAG ABM
• Desired Outcome:
 – Analysis of projects that improve system efficiency
Why DTA-ABM Integration

- Congestion Duration
- Dynamic Tolling
- Travel Time Reliability
- Refined Speeds for Air Quality
- Finer Time Period Resolution for the ABM Choice models
- Launching Point for New ICM Corridors
DTA-ABM Interface

• General Framework

- SANDAG GIS DATABASE (TCOV)
 - Activity Based Model (CT-RAMP)
 - Dynamic Traffic Assignment (Aimsun)
GIS Network Database

• TCOV Master Network Framework
 – Road & transit network data
 – Contains all future project phasing
• Goal: Support Meso and Macro Networks in 1 GIS Database
Challenges with Existing Structure

• Network Attributes Configured for Macroscopic Assignment
 – Missing minor intersection approaches
 – Missing intersection details:
 • U-turns
 • Turn bay lengths
 • Number of turn bays
 • No turn on red signage
 – Controller IDs and signal timing details
 – 3,600+ signalized intersections
Existing Network Structure

Current GIS Network

Actual Geometry
Updated Network Structure

Updated Network

Actual Geometry
Network Database

- DTA Network Generation Framework

- GIS Network (TCOV)
 - Shape File
 - Aimsun Network Import
 - Updated GIS attributes
 - Aimsun Network Calibration
Data Interfaces

Integrated Corridor Management System
- RAMS
- RMIS
- CPS
 - Manual Signal Parameters

SANDAG GIS (TCOV)
- Node and Links
- Transit Routes
- Traffic Counts
- Historical Travel Times

Aimsun Network
Network Update Fields

<table>
<thead>
<tr>
<th>Item</th>
<th>Task</th>
<th>Data Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-block lanes</td>
<td>Review</td>
<td>Aimsun (if fix is needed)</td>
</tr>
<tr>
<td>Thru, left, right bays</td>
<td>Review</td>
<td>Aimsun (if fix is needed)</td>
</tr>
<tr>
<td>Shared TLR, TL, TR, LR</td>
<td>Review / Collect</td>
<td>Aimsun (if fix is needed)</td>
</tr>
<tr>
<td>Right and left bay lengths</td>
<td>Collect</td>
<td>Aimsun</td>
</tr>
<tr>
<td>U-turns</td>
<td>Collect</td>
<td>Aimsun</td>
</tr>
<tr>
<td>No turn on red</td>
<td>Collect</td>
<td>Aimsun</td>
</tr>
<tr>
<td>Transit queue jumps</td>
<td>Collect</td>
<td>Excel</td>
</tr>
<tr>
<td>Lane usage restrictions (time)</td>
<td>Collect</td>
<td>Excel</td>
</tr>
</tbody>
</table>
Importation Process

• Exportation from ArcINFO Coverage to Shapefile
 - Adds QuicNet signal controller IDs
 - Creates MGRA (MAZ) to network nodes correspondence

TAZ (4,996 Centroids) MGRA (23,002 Centroids)
Importation Process

• Importation to Aimsun Using Python Scripts
 − Node names
 − Time of day (TOD) lane closures and configurations
 − HOV/Truck/Transit links and prohibitions
 − Auxiliary lanes
Importation Process

• Importation to Aimsun Using Python Scripts
 – Transit details
 – TOD tolling details
 – Turn bays and ramps
Importation Process

• Importation to Aimsun Using Python Scripts
 – Intersection controls
 • Signal timing/phases
 – ABM demand data
Calibration Parameters

- Parameters Stored Such As
 - Look-ahead distance
 - Give way time factor
 - Visibility distance

Sample Aimsun Parameters
Next Steps/Challenges

• Existing Signal timing data
 – Only 70% of data in standardized format
 – Large amount of data in pdf or doc format needs conversion to standardized database
 – NEMA approach phasing import data needed
What do we want to test??

- Future Projects
 - ITS/System management applications
 - Signal timing
 - Transit improvements/projects
Project Team

• DTA Project Team
 – Rick Curry, SANDAG rick.curry@sandag.org
 – Mike Calandra, SANDAG mca@sandag.org
 – Pascal Volet, Parsons Brinckerhoff volet@pbworld.com
 – Matthew Juckes, TSS-Transport Simulation Systems, Inc. matthew.juckes@aimsun.com
ABM / Active Transportation Model Update

Wu Sun

wsu@sandag.org
Status & Timeline

Development
- ABM Development
 - 01/2009 - 01/2013

Transition
- FY13-14
 - 06/2014
- AT Phase 1
 - DB & Reporting
 - RTP applications

Application
- FY15
 - 06/2015
- SHRP2-Toll/MLs
- AT Phase 2
- Military Bases
- Demand Side Improvement
- Workflow improvement

PopSyn III
- Documentation
Military Trip Modeling Improvement

- Military base traffic counts:
 - Locations
 - 10 military bases
 - 48 gates
 - Radar and manual counts

- Model improvements

- Calibrations and validations
Population Synthesizer III

- **Features:**
 - Improved algorithm with relaxed target balancing.
 - Allows multiple level of geography
 - Customized to fit SANDAG ABM database

- **Results:**
 - Hits population and household targets better than PopSyn II
Documentation Update

- **Goals:**
 - Update changes/improvements made to ABM/AT models

- **Updated documentations:**
 - User guide
 - Estimation report
SHRP2 Grant

- **SHRP2 Grant:**
 - The 2nd Strategic Highway Research Program (SHRP2)
 - Advanced Travel Analysis Bundle: promote advanced travel modeling methodologies
 - SANDAG selected as lead adopter for C04

- **Goals:**
 - Integrate C04 in SANDAG ABM
 - Introduce travel time reliability & traveler response to congestion and pricing in ABM.
 - Improve toll & managed lanes modeling
ABM Supply Side Improvement

- **Traffic assignments:**
 - Convergence criteria
 - Feedback loop
 - Model run time impact

- **Streamline GISDK scripts:**
 - Assignment
 - Skimming
 - Network building scripts
Workflow Improvement

- Inputs consistency screening
- Logging and error handling
- Configuration optimization
- Parallel traffic assignments
Open Discussion
Forum Agenda Recap

- Network Maintenance
- Dynamic Traffic Assignment
- ABM / Active Transportation Model Update

Next Transportation Modeling Forum: December 9, 2015
Transportation Modeling Forum

June 10, 2015