We are pleased to present the 2011 State of the Commute report. SANDAG has assembled a range of data in this document that assess travel characteristics in the San Diego region. State of the Commute reports are intended to provide comprehensive reviews of changes in transportation performance and trends in congestion, as well as report data and statistics under the ongoing SANDAG performance monitoring program. In addition, the report supports the agency’s efforts to understand just how well the region’s transportation system is performing, as well as help identify opportunities to maximize system efficiency, sustain regional mobility, and track the benefits of transportation improvements.

The 2011 report provides an update of transportation performance data through December 2011. It also focuses on regional travel trends, key system performance indicators, and corridor-level performance indicators. It places emphasis on data for reporting trends and changes in highway and transit travel, commuting highway travel times, and highway system delays. These statistics are evaluated to document where – and how much – change has occurred from regional, system, and corridor perspectives.

Accordingly, this document is organized as the 2010 report was, with three major sections:

- **Getting Around the Region** – This section provides an overview of regional travel trends. It quantifies traffic flows on our freeways and regional arterials, as well as transit ridership levels. It also lays the groundwork for future reporting on walking and biking.

- **How is the System Working?** – This section provides performance statistics, including regional and corridor travel-delay data and information on the most heavily used transit routes.

- **My Corridor Commute** – This section analyzes the performance of a number of specific travel corridors in the region. It measures progress relative to benchmarks set for usage, travel times, and other key statistics, highlighting completed or planned projects designed to reduce congestion and minimize delay.

In general, data in the 2011 State of the Commute report indicate that use of the transportation system has increased, apparently tracking some small but positive trends in the economy. Highway travel quantified by vehicle miles traveled (VMT) has seen an increase of approximately 4 percent since 2009. This is also the case for transit travel (quantified by the number passenger miles traveled), where the region has experienced an increase of 5 percent during the last five years.

Despite the increases in usage, key roadway infrastructure improvements also continue to provide reductions in travel times or in commute delays. For example, in 2010 work was completed on an extra merging lane...
Basics for Reading the State of the Commute

The 2011 State of the Commute report focuses on calendar year data reported through December 2011. It places emphasis on data for reporting trends and changes in highway and transit travel, commuting highway travel times, and highway system delay. These statistics are assessed to document where and how much change has occurred from regional, system, and corridor perspectives.

Highway travel is quantified by vehicle miles traveled (VMT) which is defined as a specific vehicle count/use of roadway multiplied by the length of the roadway segment during an average weekday. Transit travel is quantified by the number passenger miles traveled (PMT) which is often used as a corollary to vehicle miles traveled to illustrate the cumulative number of miles traveled by all transit passengers during a typical weekday on the region’s buses, shuttles, trolleys, and commuter trains. Transit use is quantified by passenger boardings (ridership).

Travel time is a key metric for assessing changes in trip quality. The time it takes us to travel along key regional corridors during morning and afternoon commute periods provides an indication of congestion. The reliability of such travel times also is measured by the additional (budgeted) time we need to build into a trip to make sure we arrive on time under the worst possible conditions or at the 95th percentile of the time. Delay also is a key metric for assessing changes in congestion and can be quantified as the total time that we lose due to traveling under congested conditions (how much time is lost when we travel at speeds less than 35 miles per hour).

The My Corridor Section provides data to show how our commute has changed over time, including average weekday corridor VMT, travel times, budgeted travel times, and transit ridership levels. My Corridor sections present data for the Interstate 5 North (I-5), I-15/State Route (SR) 163, I-805, SR 52, and SR 78 commute corridors.
Understanding how the transportation system is being used is a key step in developing strategies for near-term and long-term improvements, as well as identifying approaches to meeting our transportation goals. In addition, important factors in measuring the sustainability of transportation systems and environmental impacts include miles traveled on the network, peak period trips, and transit usage.

How much are we using the transportation system?

The number of miles traveled on the region's surface transportation system is a measure of how connected our communities are in terms of employment and housing, but is also strongly influenced by population, employment levels, and the economy. San Diego County's location along the international border, as well as its role as an employment center for residents of Mexico, Imperial County, and Southwest Riverside County, are contributing factors to the amount of travel that occurs on the region's roadways. The measure of vehicle miles traveled (VMT) also is used as an indication of the environmental impact created by passenger vehicles and commercial trucks. Freeway travel is measured and reported by the Freeway Performance Measurement System (PeMS). PeMS takes data from freeway detectors, estimates travel speeds for a given travel corridor, and calculates travel time from one freeway on-ramp to the ultimate off-ramp. Availability of the data is subject to the operating conditions, or “health,” of the freeway detectors.

As described in the 2010 State of the Commute report, the recession influenced the amount of demand placed on the freeway system. In 2009 within the San Diego metropolitan area and along the urban freeway system, San Diegans drove approximately 33 million miles, or approximately 10.4 vehicle miles per person per weekday. Since then, the rate of job losses in San Diego County has slowed. Between 2009 and 2010, the job loss rate was 0.9 percent, as compared to 5.2 percent between 2008 and 2009.

In step with these initial and slow transitioning employment trends, total annual weekday travel on the freeway system has increased from 8.60 billion vehicle miles in 2009 to 8.64 billion vehicle miles 2011. Overall, the demand for travel has grown to approximately 11.1 vehicle miles traveled per person, as illustrated in the accompanying graph.
What roadways do we use?

Our surface transportation system is composed of a network of local streets, connecting arterial roadways, and freeways. All trips use one or more components of the roadway system. Measurements of this usage can aide in land use planning, development of operational strategies, and guiding transportation investments. Due to the region’s topography, freeways remain the primary network for travel to and from work, for shopping, and for entertainment. Since the last State of the Commute report, expansions of the SR 52 and SR 905 have been added to the freeway system, along with some smaller additions throughout the region. (This report only considers projects completed through December 2011.)

While the freeway system makes up about 20 percent of the total lane miles in the region, it continues to accommodate the majority of the vehicle miles traveled – approximately 55 percent. Local streets and arterials represent about 80 percent of the roadway network, but just 45 percent of the travel.

Regional travel by transit

Increased transit usage decreases traffic congestion and increases the sustainability of our transportation system. Transit helps to reduce vehicle miles traveled and their associated environmental impacts. Passenger miles traveled (PMT) is often used as a corollary to vehicle miles traveled to illustrate the cumulative number of miles traveled by all transit passengers during a typical weekday on the region’s buses, shuttles, trolleys, and commuter trains.

Transit passenger miles traveled have increased by 5 percent during the past five years. Additionally, the increase in transit passengers continues to outpace increases in population, jobs, and vehicle registrations.

During the last five years, transit boardings have increased by more than 7 percent,
with more than 350,000 weekday passenger boardings in 2011. Transit ridership continues to be influenced by the availability of transit services, the price of gasoline, and the state of the regional economy.

The notable increase in PMT that started in fiscal year 2007 (July to June) can be attributed to the opening of the Green Line Trolley Extension in 2005 and SPRINTER light rail service introduced in 2008.

The decline in ridership during 2010 can be traced to a roughly 25 percent decline in gasoline prices, which in turn led to more auto travel. The continued effects of the recession served as another factor, including continued job losses in San Diego County through 2010.

Both the Metropolitan Transit System (MTS) and North County Transit District (NCTD) continue to take a proactive approach toward ensuring that their routes are achieving a certain level of performance. Examples of this effort include the MTS Comprehensive Operations Analysis (implemented in 2007) and the NCTD Mobility Plan (to be fully implemented by 2013). In addition to the 7 percent system-wide increase in transit riders, the productivity of the system (as measured by passengers per revenue mile of transit service provided) increased by 16 percent during the same time period. This shows that the transit system is becoming more efficient, as well as more popular.

In addition, MTS and NCTD have performed better than other regional transit systems at the farebox. Farebox recovery is a good indicator of the overall financial health of the system, as well as the operators’ continued eligibility for financial support. This cost-recovery indicator also helps to determine the appropriateness of the fare structure. Based on the peer comparison to the right, it appears that the fare structure and transit operations are being managed effectively.

While rail and bus ridership are trending upward, bus ridership continues to be the workhorse of the transit system in the San Diego region, carrying about two-thirds of total riders. Bus ridership in the San Diego

<table>
<thead>
<tr>
<th>Transit System</th>
<th>Farebox Recovery Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Diego System Wide</td>
<td>33.8%</td>
</tr>
<tr>
<td>Dallas (DART)</td>
<td>11.5%</td>
</tr>
<tr>
<td>Denver (RTD)</td>
<td>26.6%</td>
</tr>
<tr>
<td>Los Angeles (LACMTA)</td>
<td>26.5%</td>
</tr>
<tr>
<td>Minneapolis (Metro Transit)</td>
<td>31.0%</td>
</tr>
<tr>
<td>Orange (OCTA)</td>
<td>24.1%</td>
</tr>
<tr>
<td>Phoenix (RPTA)</td>
<td>16.9%</td>
</tr>
<tr>
<td>Portland (TriMet)</td>
<td>22.8%</td>
</tr>
<tr>
<td>Sacramento (RT)</td>
<td>21.9%</td>
</tr>
<tr>
<td>Salt Lake (UTA)</td>
<td>17.7%</td>
</tr>
<tr>
<td>Santa Clara (VTA)</td>
<td>13.9%</td>
</tr>
<tr>
<td>10 Peer Average</td>
<td>21.3%</td>
</tr>
</tbody>
</table>

In addition to transit, alternative travel modes such as carpooling/vanpooling, biking, walking, and teleworking reduce the number of vehicles using the transportation system. The resulting decrease in traffic reduces congestion and environmental impacts.

How residents in the region commute has stayed fairly consistent over the last five years, according to commute mode-share data obtained from the annual American Community Survey conducted by the U.S. Census Bureau using a limited number of survey responses (1 out of 40 households). San Diego County survey data indicate that, while the majority of commuters continue to drive alone to work, alternative modes of transportation play a role in the regional commute. Walking to work and working from home have become attractive choices for some commuters. Carpooling and vanpooling continue to provide the primary alternatives to solo commuting. In addition, events such as Bike to Work Day demonstrate that commuters are increasingly using alternative modes of travel for some commute trips.

Recently published survey findings indicate a slight increase in carpooling/vanpooling from 2009 to 2010. These survey findings are consistent with vanpool program performance data from the iCommute program which is the Transportation Demand Management program of SANDAG. iCommute provides free ride-matching services, a vanpool program, transit solutions, bicycle encouragement programs, the Guaranteed Ride Home program, SchoolPool, and support for teleworking. During 2011, participation in the regional vanpool program grew approximately 9 percent from the previous year, with 754 vanpools carrying 5,899 daily passengers.

While transit use represents a 3 percent to 4 percent mode share region wide for the work commute, it should be noted that the transit system is focused primarily on the urbanized areas where trolley and bus systems can cost
effectively serve the maximum number of riders. Comparison of travel on primary routes between major destinations within corridors where significant investments have been made in transit infrastructure (such as the Blue Line Trolley from San Ysidro to Old Town and the Orange Line Trolley from Gillespie to the Convention Center/Old Town) shows a much higher share of transit travel (transit mode share) during the morning peak period:

- 30 Percent Transit Mode Share: Northbound I-5 in South Bay toward downtown San Diego
- 19 Percent Transit Mode Share: SR 94 West toward downtown San Diego

Although overall transit ridership and passenger miles have been increasing, use of public transit for the commute to and from work by San Diego County residents has remained relatively stable. Growth in overall transit ridership can be attributed to non-work trips, such as student trips to academic institutions, access to special events and attractions, and transit trips outside of the commute periods.

Future State of the Commute reports will increase emphasis on active transportation, highlighting new facilities and measuring bicycling and walking as commute modes in the region. In 2010, the SANDAG Board of Directors approved Riding to 2050: The San Diego Regional Bicycle Plan. It is the first bicycle plan for the region as a whole. It outlines a regional bicycle network, as well as supporting programs. One such program includes development of data collection, reporting, and modeling for active transportation. As data become available, future reports will illustrate the importance of bicycling and walking as regional commute modes. Pedestrian activity and infrastructure will be included in future reports as well, as many transit commute trips begin by walking to a transit stop or station.
The performance of the surface transportation system is best evaluated by measures such as delay, congested segments, and travel time. Transit is best measured through ridership levels. These indicators can be used to assess improvements, identify bottlenecks, and develop strategies and investment plans.

Total freeway delay during peak-hour commute

As the economy has slowly pulled out of recession, and employment numbers have begun to recover, peak-hour demand has increased on the region’s roadways. Overall delay during peak commute periods provides a snapshot of how the transportation system is working.

After experiencing significant declines in peak-commute-period delay between 2007 and 2009, San Diego commuters have had to contend with an increase in delay of approximately 30 percent. This congestion is measured in terms of the number of hours the freeway operates below a certain speed. For example, “severe” delay occurs when vehicles are moving at a sustained speed of less than 35 miles per hour. That is the key statistic in the corresponding Annual Peak Period Delay graph during weekday morning and afternoon commutes.
Regional bottlenecks

In recent years infrastructure improvements have played a key role in decreasing delays at specific bottlenecks. As illustrated below, identifying the causes of delay and measuring the outcomes of system improvements can be accomplished by examining specific segments/locations along individual freeways.

Our efforts to address major bottlenecks along key freeway corridors have resulted in the completion of several projects that have reduced severe congestion levels and delay. For example, previously reported segment bottlenecks along the I-5 and I-15 corridors were reduced below 2005 conditions due to the I-5 HOV Lane Extension and I-15 Express Lanes projects.

The 2011 report analysis indicates that while the segments of SR 78 or SR 163 ranked among the top bottlenecks, their delays are relatively moderate when compared to delays experienced on the I-5 and I-15 segment corridors in the past.

Note that the emergence of the SR 163 southbound segment is due to freeway detection system improvements. Detection improvements will now enhance our ability to better track travel times or delays along the corridor over time.

The identification of top regional bottlenecks, and their impacts on travel times and delays, will be an on-going performance reporting effort in future State of the Commute reports.

Regional Bottlenecks

- **Eastbound SR 78 from Mar Vista Rd. to I-15**
- **Southbound I-15 from SR 78 to Centre City Pkwy.**
- **Northbound I-5 from I-805 to Manchester Ave.**
- **Southbound SR 163 from I-15 to I-5**
- **Southbound I-5 from Palomar Airport Rd. to Manchester Ave.**
Based on regional travel data for the urban freeway system, it is estimated that approximately 50 percent of daily travel is made during the morning and afternoon commute periods (weekdays from 6 to 10 a.m. and 3 to 7 p.m.). Assessing how much travel is made on the region’s key freeway corridors during these high-demand periods provides an understanding of the total time lost due to traveling under congested conditions (when speeds drop to less than 35 miles per hour). In 2009, commuters during the morning and afternoon commute periods experienced, respectively, just more than 800,000 and two million hours of delay. In 2011, the hours of delay increased to just more than 1.3 and 2.6 million during the morning and afternoon commute periods, respectively.

An analysis of the 2011 data showed that the majority of freeway delay in the San Diego region occurred along the major freeway corridors (I-5, I-15, I-805, and SR 78). In addition, recent improvements to the detection system along the SR 163 corridor allowed data to be gathered in 2011 that indicated the delay experienced by commuters amounted to 10 percent and 11 percent of the total delay during the morning and afternoon commutes, respectively. These five freeways account for more than 80 percent of the freeway delay observed during the morning and evening commute periods. Both directions of the I-5 corridor account for the highest observed delay when combined – approximately 58 percent of the total delay, or 22 percent and 36 percent during the morning and afternoon commutes, respectively.

NOTE: Delay is based on observed data in the freeway general purpose lanes and available freeway detection.
2011 top transit routes by ridership

Transit ridership is a key performance measure in assessing the efficiency of the transportation system. Increased transit ridership reduces overall demand, cuts environmental impacts, and eases traffic congestion. The region’s transit operators provided service to more than 350,000 passengers per weekday in 2011, with more than 60 percent riding buses.

The Blue Line Trolley, from San Ysidro to Old Town, is the busiest transit route in the region, with more than 64,000 daily trips. Peak period ridership on the Blue Line Trolley is influenced by cross-border pedestrian traffic at the San Ysidro Port of Entry, which increased 4 percent from 2009 to 2010. The Green and Orange Line Trolleys combine to serve more than 50,000 daily trips. The Route 7 bus service from La Mesa to downtown San Diego serves approximately 12,000 daily trips, and is the most patronized local bus route in the region. The SPRINTER light rail service from Escondido to Oceanside also provides nearly 8,000 daily trips along the SR 78 corridor.

2011 TOP 10 TRANSIT ROUTES BY RIDERSHIP

<table>
<thead>
<tr>
<th>2011 Rank</th>
<th>2009 Rank</th>
<th>Route</th>
<th>Route Description</th>
<th>Transit Mode</th>
<th>Avg. Daily Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Blue Line Trolley</td>
<td>San Ysidro to Old Town</td>
<td>Light Rail</td>
<td>64,945</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Orange Line Trolley</td>
<td>Gillespie to Convention Center/ Downtown SD</td>
<td>Light Rail</td>
<td>30,644</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Green Line Trolley</td>
<td>Santee to Old Town</td>
<td>Light Rail</td>
<td>19,909</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
<td>Downtown SD to La Mesa</td>
<td>Local Bus</td>
<td>12,259</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>11</td>
<td>Skyline Hills to San Diego State University</td>
<td>Local Bus</td>
<td>9,398</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>929</td>
<td>Downtown SD to Iris Avenue Trolley</td>
<td>Local Bus</td>
<td>8,456</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>Sprinter</td>
<td>Oceanside to Escondido</td>
<td>Light Rail</td>
<td>7,901</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>13</td>
<td>24th Street Trolley to Kaiser Hospital</td>
<td>Local Bus</td>
<td>7,467</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>30</td>
<td>Downtown SD to UTC/VA Medical Center</td>
<td>Local Bus</td>
<td>7,030</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>3</td>
<td>Euclid Trolley to UCSD Medical Center/Hillcrest</td>
<td>Local Bus</td>
<td>6,779</td>
</tr>
</tbody>
</table>
Transit ridership of TransNet-supported services

Continued investments in new transit services, as well as rehabilitation of existing networks, are keys to increasing ridership. The TransNet program has played an important role in developing major transit services in the region. The TransNet program has provided funding to key regional Trolley enhancements, including the Old Town Trolley Station and the Mission Valley East/West Extension.

In 2011, TransNet-supported routes – the SuperLoop, SPRINTER, COASTER, and Orange/Blue lines – combined to carry more than 110,000 weekday trips, almost one-third of all weekday transit trips in the region.

REGIONAL TRANSIT RIDERSHIP - TRANSNET PROGRAM

Consistent with the 2010 State of the Commute report, SANDAG has continued its efforts to understand just how well our transportation system is performing from the traveler's perspective. The My Corridor Commute section provides just that – a snapshot of annual data focusing on major commute routes. It also presents historical corridor-level data in an effort to capture and identify changes and trends in our commutes over time. This section illustrates how peak travel has changed for the I-5 North, I-15/SR 163, I-805, SR 52, and SR 78 commute corridors. It includes freeway performance data for these featured corridors, such as overall corridor travel, travel time, and corridor delay. The data comes from the Performance Measurement System (PeMS), which relies on freeway detectors and is subject to the availability and “health” of those detectors. The regional map on the next page shows the existing PeMS detection coverage.

Each featured corridor section reports travel times during the morning and afternoon commutes. Travel times represent trip times once on the freeway only, rather than door-to-door commute times. PeMS takes data from the freeway detectors, estimates travel speeds for a given segment of freeway, and calculates travel time from one freeway on-ramp to the ultimate off-ramp. Morning and evening travel times in this section assume that one enters and exits the freeway at 8 a.m. and 5 p.m., respectively.

The reported travel times in this section may differ from travel times reported in other documents, such as the Regional Transportation Plan (RTP). While travel times in My Corridor Commute are based on actual collected roadway data, door-to-door travel times in the RTP are based on the San Diego Regional Transportation Model. Travel time estimates from the Regional Transportation Model are based on roadway configurations, traffic volumes, and intersection controls for all streets, arterials, and freeways along the trip route. Modeled travel times are not observed data, but are extensively calibrated.
to represent data derived from a series of programs designed to forecast travel demand on the transportation system.

Commute travel times are reported in three different ways: average, median, and budget. The average travel time is simply that: the average of all midweek travel times (Tuesdays, Wednesdays, and Thursdays) for a time period. The median (or 50th percentile) travel time is the typical travel time that occurs during the middle of the work week for the same time period. The budget time reported in this section is a measure of the freeway corridor’s reliability. The budget time is the time one would need to add to one’s typical commute to ensure an on-time arrival under worst-case conditions, or at the 95th percentile of the time. Higher budget times are related to less reliable travel caused by freeway bottlenecks, higher freeway incident rates, prevalence of special events, etc.

Efforts to improve PeMS and roadway performance monitoring are on-going. Specific enhancements currently under development will allow PeMS to incorporate real-time transit and arterial data. With the completion of the monitoring network on the region’s arterials and remaining freeway segments, PeMS will have the ability to report door-to-door travel times in selected corridors for both automobiles and transit vehicles.

Transit performance data comes from the Metropolitan Transit System (MTS), the North County Transit District (NCTD), and SANDAG.

This section also provides information about plans for improving mobility along the region’s transportation corridors, as well as a brief assessment of the travel benefits resulting from the completion of freeway improvement projects in some of the featured corridors.
I-5 North Commute Corridor

The I-5 North commute corridor serves as a critical north-south travel link connecting San Diego to Los Angeles County, Orange County, and Baja California, Mexico. The corridor provides a number of commuting options for local, regional, and interregional trips, including the existing eight- to ten-lane freeway network, the COASTER commuter train, and the local street network. The corridor serves as a gateway to San Diego’s commuters, recreational users, goods movement, business centers, and local residents. It is also estimated that it provides access to approximately 22 percent of the region’s total jobs. The corridor also serves as the main trunk line for interregional weekend travel to the Del Mar Fairgrounds, LEGOLAND®, and the region’s beaches. It is estimated that approximately six million people visit these locations on an annual basis. Travel times along this corridor are forecast to increase for solo drivers to approximately 65 minutes if improvements are not made by 2050, according to the 2050 Regional Transportation Plan (RTP).

Freeway congestion is prevalent in the corridor and is expected to worsen during peak commute periods as population grows over time. The average daily traffic volume along I-5 north ranges from 135,000 to 250,000 vehicles. Commute times (representative of highway general purpose lanes) between SR 76 in Oceanside and Front Street in San Diego are estimated at 43 minutes during the southbound morning commute and 44 minutes during the northbound evening peak period. These travel times represent an increase of 10 and 13 percent since 2009, respectively. Congestion also affects the reliability of travel times for southbound travel; commuters need to plan for an extra 13 minutes on average to complete their morning commutes.

Average weekday transit ridership in the corridor has seen a slight increase to just more than 5,300 daily trips in 2011.

During the last several years, freeway improvements have continued to provide benefits to the corridor, including the addition of carpool lanes from Via de la Valle to just south of Manchester Avenue. This project has reduced overall freeway delay by approximately 55 percent in the northbound direction along that specific segment. Auxiliary lanes and interchange improvements at Lomas Santa Fe Drive also have provided benefits to the corridor, reducing delay by 63 percent. Current corridor improvements under development include the I-5/SR 56 interchange project, which will include improvements to local streets and the addition of auxiliary lanes.

Additional mobility and reliability improvements planned for this corridor are essential components of the 2050 RTP. The RTP lays out a plan for a balanced approach to addressing the region’s anticipated growth that includes providing convenient travel options, optimizing system efficiency, and supporting alternate modes of travel. Proposed 2050 RTP improvements include the implementation of the I-5 North Coast Corridor (NCC) Program which is composed of three primary focus areas: four new Express Lanes (I-5 North Coast Express Lanes project, which will extend from La Jolla Village Drive to Vandegrift Boulevard); coastal rail and transit improvements (COASTER double tracking to accommodate trains every 20 minutes, improve train frequencies, expand service on the COASTER and Amtrak lines, and add new Rapid bus routes); and environmental protection and coastal access improvements (preservation of more than 170 acres of critical coastal habitat and improvements to more than 23 miles of bike and pedestrian paths). The NCC Program represents a $6.5 billion investment in the San Diego economy over the next few decades.

The I-5 North Coast Express Lanes Project would maintain or improve future traffic levels of service through 2050 over the existing levels of service, as well as improve or maintain free flow travel during peak commute hours. The proposed improvements will create a flexible freeway network that will provide additional travel choices, including facilities for carpooling/vanpooling and premium transit services.

This project has been identified as a high priority in the region and is currently part of the TransNet Early Action Program (with the focus on the completion of the environmental document). The draft environmental document was released in June 2010, and the final report is expected in late 2012. Work is expected to begin on Phase 1 in 2013, commencing with the extension of the high occupancy vehicle lanes, one lane in each direction, from Manchester Avenue to SR 78. Detailed project information is available at KeepSanDiegoMoving.com.
OCEANSIDE TO DOWNTOWN SAN DIEGO

Average Weekday Travel
I-5 from SR 76 to Front/First Streets

<table>
<thead>
<tr>
<th>Year</th>
<th>Travel (million vehicle miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>7</td>
</tr>
<tr>
<td>2008</td>
<td>7</td>
</tr>
<tr>
<td>2009</td>
<td>7</td>
</tr>
<tr>
<td>2010</td>
<td>7</td>
</tr>
<tr>
<td>2011</td>
<td>7</td>
</tr>
</tbody>
</table>

Ridership at Solana Beach Screenline
Year 2011 Average Weekday Ridership: 5,300

Average Freeway Travel Time
AM Southbound PM Northbound

<table>
<thead>
<tr>
<th>Year</th>
<th>Travel Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>43</td>
</tr>
<tr>
<td>2008</td>
<td>43</td>
</tr>
<tr>
<td>2009</td>
<td>43</td>
</tr>
<tr>
<td>2010</td>
<td>43</td>
</tr>
<tr>
<td>2011</td>
<td>43</td>
</tr>
</tbody>
</table>

AM Travel Time Reliability to Downtown San Diego

<table>
<thead>
<tr>
<th>Year</th>
<th>Delay (thousand vehicle hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>19</td>
</tr>
<tr>
<td>2008</td>
<td>14</td>
</tr>
<tr>
<td>2009</td>
<td>4</td>
</tr>
<tr>
<td>2010</td>
<td>43</td>
</tr>
<tr>
<td>2011</td>
<td>41</td>
</tr>
</tbody>
</table>

Average Weekday Transit Ridership

<table>
<thead>
<tr>
<th>Year</th>
<th>Transit Ridership</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>5,600</td>
</tr>
<tr>
<td>2008</td>
<td>5,000</td>
</tr>
<tr>
<td>2009</td>
<td>4,800</td>
</tr>
<tr>
<td>2010</td>
<td>4,700</td>
</tr>
<tr>
<td>2011</td>
<td>4,800</td>
</tr>
</tbody>
</table>

Note: Ridership at Solana Beach screenline for COASTER and Route 101 bus

Average Freeway Travel Time
AM Southbound PM Northbound

<table>
<thead>
<tr>
<th>Year</th>
<th>Travel Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>43</td>
</tr>
<tr>
<td>2008</td>
<td>43</td>
</tr>
<tr>
<td>2009</td>
<td>43</td>
</tr>
<tr>
<td>2010</td>
<td>43</td>
</tr>
<tr>
<td>2011</td>
<td>43</td>
</tr>
</tbody>
</table>

Average Daily Traffic
I-5 at Del Mar Heights Road
Year 2010: 244,000

Average Daily Traffic by Day of Week

<table>
<thead>
<tr>
<th>Day</th>
<th>Average Daily Traffic (thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN</td>
<td>21</td>
</tr>
<tr>
<td>MON</td>
<td>22</td>
</tr>
<tr>
<td>TUE</td>
<td>22</td>
</tr>
<tr>
<td>WED</td>
<td>22</td>
</tr>
<tr>
<td>THU</td>
<td>22</td>
</tr>
<tr>
<td>FRI</td>
<td>22</td>
</tr>
<tr>
<td>SAT</td>
<td>22</td>
</tr>
</tbody>
</table>

I-5 IMPROVEMENTS: BEFORE AND AFTER

Corridor Delay and Travel Southbound I-5 from Palomar Airport Road to Manchester Ave

<table>
<thead>
<tr>
<th>Year</th>
<th>Delay (thousand vehicle hours)</th>
<th>Travel (million vehicle miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>2007</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>2008</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>2009</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>2010</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>2011</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>2012</td>
<td>140</td>
<td>140</td>
</tr>
</tbody>
</table>

Delay (thousand vehicle hours) Travel (million vehicle miles)

Budget Time Median Travel Time

Average Daily Traffic
I-5 from SR 76 to Front/First Streets

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Daily Traffic (thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>65</td>
</tr>
<tr>
<td>2008</td>
<td>65</td>
</tr>
<tr>
<td>2009</td>
<td>65</td>
</tr>
<tr>
<td>2010</td>
<td>65</td>
</tr>
<tr>
<td>2011</td>
<td>65</td>
</tr>
</tbody>
</table>

Notes:
- Ridership at Solana Beach screenline for COASTER and Route 101 bus.
- I-5 IMPROVEMENTS: BEFORE AND AFTER
- Corridor Delay and Travel Southbound I-5 from Palomar Airport Road to Manchester Ave
- Average Daily Traffic
- I-5 IMPROVEMENTS: BEFORE AND AFTER
The I-15/SR 163 commute corridor consists of a 35-mile, eight- to ten-lane freeway segment between SR 78 and downtown San Diego, a transit network that includes Express Premium Bus service into downtown San Diego from northern inland communities, and approximately 25 miles of parallel arterial network. The corridor is the primary inland north-south trunk line that connects and serves travelers coming from Southwest Riverside County to downtown San Diego and other regional destinations. The corridor also serves as one element of a major interregional goods movement corridor, connecting Mexico with Riverside and San Bernardino counties, as well as Nevada. The corridor is the primary north-south link that connects northern inland communities with the urban core. Travel times along this corridor for single-occupant vehicles are forecast to increase to approximately 51 minutes by 2050 without improvements to the freeway, according to the 2050 RTP.

Congestion along the I-15/SR 163 corridor is a critical regional issue because it is one of just two major north-south commuter routes. Average daily traffic in the corridor ranges from 100,000 vehicles on SR 163 near Balboa Park to 300,000 at the I-15/SR 163 junction. Travel times in the general purpose lanes between SR 78 and Balboa Park on SR 163 (Robinson/Washington Street) are estimated at 36 and 35 minutes during the morning southbound and afternoon northbound commute periods, respectively. These travel times represent an increase of 16 percent and 6 percent since 2009, respectively. Despite an increase in overall travel time during the morning southbound commute, the estimated reduction in budgeted travel time by two minutes indicates that commuting along the corridor grew more reliable between 2010 and 2011. The reduction of budgeted travel times indicates that travelers along the corridor required less additional time to make sure they completed their trips on time and can be attributed to fewer routine delays, fewer freeway incidents, and/or fewer impacts associated with construction.

The I-15/SR 163 corridor recently achieved a major milestone. Caltrans and SANDAG completed construction of the last segment of the I-15 Express Lanes – from Centre City Parkway to SR 78. It opened to the public in January, at the time of the development of this 2011 State of the Commute report. The corridor now includes 20 miles of Express Lanes, stretching all the way from SR 163 to SR 78. The I-15 Express Lanes were designed to meet the diverse needs of corridor travelers for local, regional, and interregional trips. Based on preliminary data from January 2011, the final Express Lanes segment has reduced delay on I-15 from Lake Hodges to SR 78 by almost 75 percent. The initial analysis is based on a year-over-year comparison of data collected during a limited (two-week) period of time.

The I-15 Express Lanes facility is the region’s first adaptable, high-tech transportation system. It is available for free to transit, carpools, vanpools, and motorcycles. For a fee, single-occupant vehicles are also able to travel on the Express lanes. The corridor will include a Bus Rapid Transit (BRT) system anticipated to begin operation in early 2014. The BRT system will connect with the I-15 Express Lanes facility via direct access ramps (DARs). The DARs will route users directly onto the Express Lanes, avoiding surface streets and general purpose ramps and lanes. Movable barriers and the BRT system will improve the flow of traffic and transit and will have the ability to adjust to increases in congestion during peak hours.

The Express Lanes project – including the BRT system – has been identified as a high priority in the region and is currently part of the TransNet Early Action Program. Detailed project information is available at KeepSanDiegoMoving.com.
MY CORRIDOR COMMUTE

Average Freeway Travel Times

AM Travel Reliability to Downtown San Diego

I-15 Improvements: Before and After

Average Daily Traffic
I-15 at Poway Road
Year 2010: 236,000

I-15 Express Bus Services
Year 2011 Average Weekday Ridership: 2,924

Year 2011 A.M. Travel Time
Southbound
Starting at 8 a.m.
36 minutes

Year 2011 P.M. Travel Time
Northbound
Starting at 5 p.m.
35 minutes

Average Weekday Travel
I-15 from SR 78 to Robinson Ave. via SR 163

Average Weekday Transit Ridership

Note: Ridership at Miramar Way screenline for Route 20 and Series 800 Express buses.
I-805 Commute Corridor

The I-805 commute corridor consists of approximately 29 miles of eight- to ten-lane freeway stretching from near I-5 at the San Ysidro Port of Entry with Mexico to the I-5 interchange in Sorrento Valley. The corridor includes a transit network that is limited to local route services, and a local roadway network that supports regional east-west travel to and from the communities adjacent to the freeway. The I-805 corridor serves local, regional, and interregional travel. It is a heavily utilized regional commuter route that provides a north-south path from South County communities to employment centers in downtown San Diego and Sorrento Valley. It also serves as part of a larger interregional goods movement corridor, connecting international trips from Mexico to other freeway facilities and to destinations in Riverside and San Bernardino counties, as well as Nevada. Travel times along this corridor are forecast to increase for solo drivers to approximately 32 minutes from San Ysidro to downtown San Diego by 2050 without improvements to the freeway, according to the 2050 RTP.

Delays and congestion are directional on the corridor. The average daily traffic volume along this corridor ranges from 160,000 to 261,000 vehicles. Commuters generally experience delays in the morning when traveling northbound to downtown San Diego and Sorrento Valley. In the afternoon, travelers experience delay when traveling to South County locations. Northbound morning commute travel times in the general purpose lanes between SR 905 and downtown San Diego via SR 94 are estimated at 17 minutes. It takes an estimated 32 minutes to travel from SR 905 to Sorrento Valley near Mira Mesa Boulevard. Southbound afternoon commute travel times are estimated at 13 minutes from downtown San Diego and 29 minutes from Sorrento Valley. Since 2009, the southbound afternoon commute travel time has decreased by two minutes. This is the only corridor showing an improvement in travel times during the afternoon commute since 2009. In terms of travel time reliability, this corridor showed a decrease in budgeted travel time by five minutes, indicating an overall improvement in reliability.

In 2010, congestion on this corridor was reduced due to the completion and opening of a southbound auxiliary lane at SR 54. The project reduced delay by approximately 64 percent and is the primary contributing factor resulting in improvements to overall travel times and corridor reliability during afternoon commutes.

To address current and anticipated demand, proposed improvements along this corridor include the completion of an HOV/Express Lanes system from Palomar Street to the I-805/I-15 interchange (I-805 South Project) and from SR 52 to La Jolla Village Drive (Express Lanes), as well as two HOV lanes from La Jolla Village Drive to just north of Mira Mesa (I-805 Express Lanes North Project). Construction of the I-805 South Project is anticipated to begin in 2012. Construction is currently underway for the first phase of the I-805 Express Lanes North Project that includes the I-805/Carroll Canyon Road Extension project. This project will add approximately two miles of HOV lanes, completing a continuous, ten-mile set of HOV lanes (one in each direction) from Carroll Canyon Road on I-805 to Manchester Avenue on I-5. The project also will add a northbound DAR from Carroll Canyon Road to the HOV lanes.

A BRT system will operate in the HOV/Express Lanes, connecting South County to major regional employment centers in downtown San Diego and Sorrento Valley. This project is an integral part of the 2050 RTP and will complement the I-15 and I-5 Express Lanes systems. It is scheduled to go into service in 2016.

The I-805 Express Lanes North and South Projects have been identified as high priorities in the region and are part of the TransNet Early Action Program. Detailed information is available at KeepSanDiegoMoving.com.
The SR 52 commute corridor consists of approximately 12 miles of four- to six-lane freeway running from SR 125 in Santee to the I-805 interchange in Kearny Mesa. The corridor also includes a roadway network that serves as an alternate route to I-8 for local east-west travel. The corridor serves as a critical east-west travel link that connects east San Diego County communities with employment centers located in Kearny Mesa. In addition, the corridor serves as an important trunk route by connecting with other key freeway corridors, including I-5, I-15, I-805, and SR 163.

Travel delays along the corridor are directional and are similar to the I-8 corridor, with both reflecting similar morning and afternoon commuting patterns. Commuters encounter delays when traveling west in the morning and east in the afternoon. The daily average traffic volume along this corridor ranges from 63,000 to 100,000 vehicles.

According to historical average weekday traffic delay data, commuters experience longer travel times in the afternoon than they do during the morning commute. Eastbound afternoon commute travel times in the general purpose lanes from Genesee Avenue to Mast Boulevard are estimated at 17 minutes, which is an increase of three minutes from 2009. This may be attributed to higher use and demand on the corridor due to the completion and opening of the SR 52 Extension project from SR 125 to SR 67. Despite an increase in overall travel times, there was a slight reduction in budgeted travel time, indicating an overall increase in reliability between 2009 and 2011. The reduction of budgeted travel times indicate that travelers on the corridor are probably less impacted by routine delays, freeway incidents, and/or impacts associated with construction.

Caltrans and SANDAG opened the SR 52 Extension to commuters in 2011. The four-lane extension closed the gap for East County travelers headed to the coast. The new infrastructure helped relieve traffic on I-8 by as much 20 percent, providing an alternate route and direct access to job centers for commuters traveling from East County. Improvements to the detection system along SR 52 are underway. Once these improvements are complete, project benefits will be documented and reported.

Additional improvements are planned on SR 52, including the construction of one additional general purpose lane in each direction and two reversible Express Lanes from I-15 to SR 125. Detailed cost and scope information is available at KeepSanDiegoMoving.com.
Year 2011 P.M. Travel Time
Eastbound
Starting at 5 p.m.
17 minutes

Average Daily Traffic
SR 52 at Santo Road
Year 2010: 85,000

Year 2011 A.M. Travel Time
Westbound
Starting at 8 a.m.
13 minutes

Average Weekday Travel
SR 52 from Genesee Ave. to Mast Blvd.

Average Freeway Travel Time
AM Westbound
PM Eastbound

SR 52 CORRIDOR DELAY AND TRAVEL
Genessee Ave. to Mast Blvd.

Delay (thousands of vehicle hours)
Travel (millions of vehicle miles)
SR 78 Commute Corridor

State Route 78 serves as a principal commute corridor in North County. The six-lane freeway from Oceanside to Escondido is approximately 17 miles. It provides one of the region’s east-west roadways connecting the I-5 and I-15 corridors. Portions of SR 78 west of I-15 are currently experiencing congestion and delay during peak periods. Forecasts indicate that SR 78 will experience an increase in traffic in the future, which will lead to increased delay if improvements are not made to the corridor.

Average daily traffic in this corridor ranges from 124,000 at the western end near I-5 to 162,000 at the eastern approach to I-15. Travel times in the general purpose lanes between I-5 and I-15 are estimated at 16 and 26 minutes during the morning westbound and afternoon eastbound commute periods, respectively.

Because the SPRINTER runs parallel to SR 78, connecting Oceanside, Vista, San Marcos, and Escondido, it is an excellent transit alternative to driving this corridor. The SPRINTER rail service now supports nearly 8,000 daily passengers.

SANDAG is currently working with Caltrans, as well as the cities of San Marcos and Escondido, on improvements to westbound SR 78 at I-15 and to the Nordahl Road bridge. The improvements will address severe traffic congestion during the morning and afternoon commute hours. They include: widening the connector on-ramp from I-15 to westbound SR 78; adding a fifth westbound lane on SR 78 between the end of the I-15 connector ramp and Nordahl Road; adding a lane on the westbound SR 78 off-ramp to Nordahl Road; replacing the Nordahl Road bridge to improve height clearance; and adding space for turn lanes to the SR 78 eastbound and westbound on-ramps. These improvements are planned for construction from mid-2011 through 2013 as part of the TransNet program. Other construction improvements are underway by the City of San Marcos, including the addition of one auxiliary lane between Woodland Drive and Barham Drive and two auxiliary lanes between Barham and Nordahl.

In addition to these short-term improvements, on-going planning efforts continue to evaluate potential long-range improvements for the SR 78 corridor. Currently, SANDAG is working with stakeholders on the SR 78 Corridor Study to examine the feasibility of making additional improvements in the corridor.

The SR 78 Corridor Study provides a planning-level analysis of two freeway facility alternatives, including Express Lane and toll lane improvements. Both alternatives also include freeway operational improvements and transit service. The study assesses the travel demand for both alternatives, the financial feasibility of optional policy approaches to toll the new lanes or to build Express Lanes similar to the I-15 corridor, and implementation strategies such as phasing the improvements, as well as the potential impacts to sensitive environments and right-of-way within the corridor. The study is expected to be complete in 2012.

SR 76 Corridor

The section of SR 76 from Oceanside to I-15 serves as a major commuter route. Starting at I-5, it links the City of Oceanside with the communities of Bonsall, Fallbrook, Pala, Pauma Valley, Rincon, and Lake Henshaw. East of I-15, SR 76 serves mainly rural communities and tribal reservations. Portions of SR 76 are currently experiencing delay during peak periods. The problem is compounded by insufficient highway capacity, as well as a lack of parallel routes and cross-street traffic access.

In order to alleviate the congestion on this corridor, SANDAG is widening and realigning SR 76 between Melrose Drive and I-15. Work began on the portion from Melrose Drive to Mission Road in January 2010, with an estimated completion in late 2012. The draft environmental document for the SR 76 widening from Mission Road to I-15 was completed in January 2012. Construction is
Year 2011 P.M. Travel Time
Eastbound
Starting at 5 p.m.
26 minutes

Year 2011 A.M. Travel Time
Westbound
Starting at 8 a.m.
16 minutes

Average Daily Traffic
SR 78 at Barham Road
Year 2010: 158,000

Average Weekday Travel
SR 78 from I-5 to I-15

Average Freeway Travel Time from I-5 to I-15

PM Travel Time Reliability from I-5 to I-15

Budget Time
Median Travel Time

Average Weekday Transit Ridership

Note: Ridership at Vista Transit screenline for SPRINT and Route 302, 318, and 320 buses.
scheduled to start in 2012 and end in late 2015.

Several phases of implementation are currently underway in the corridor. The project is part of the TransNet Early Action Program. Detailed project information is available at KeepSanDiegoMoving.com.

Mid-Coast Corridor

The Mid-Coast Corridor Transit Project proposes to extend the San Diego Trolley from the Old Town Transit Center north to University City. Travel demand is expected to increase in the Mid-Coast corridor, and there is a need to provide a reliable, high-capacity transit service to serve this demand.

In July 2010, the SANDAG Board of Directors unanimously approved the Locally Preferred Alternative for the Mid-Coast Corridor Transit Project. The alternative will run parallel to I-5 for most of the route, and will provide trolley service to UCSD and key employment centers. The draft SEIS/SEIR will be released in late 2012 for public review and comment. The final SEIS/SEIR is expected to be completed in 2013. SANDAG is seeking funding for the project from the Federal Transit Administration (FTA) through the New Starts Program. In September 2011, the FTA approved the Mid-Coast project’s entry into preliminary engineering, officially placing it in the pipeline to receive New Starts funding. A 50 percent local match to the FTA funding will be provided by a combination of state and regional funds, including TransNet. The project is part of the TransNet Early Action Program. Detailed project information is available at KeepSanDiegoMoving.com.

Trolley Renewal

After nearly 30 years of operation, the Metropolitan Transit System’s San Diego Trolley is undergoing a massive overhaul. New low-floor trolleys, track, and station platforms are all part of the project to update the system over the next several years. Construction began in fall 2010 and is scheduled to be complete by 2015.

The renewal project is focused on upgrading the Blue and Orange lines. The project will improve station amenities; raise platforms; replace old rail and overhead wire; and improve switching, signaling, and crossovers. When the renewal is complete, riders will see minutes shaved off travel time. With the realignment of the Green Line, riders will no longer need to transfer when traveling from Mission Valley to the Convention Center or PETCO Park. The project is part of the TransNet Early Action Program. Detailed project information is available at KeepSanDiegoMoving.com.

SR 905 Corridor

State Route 905 is a partially constructed 12-mile corridor extending from I-5 to the Otay Mesa Port of Entry (POE). It is a vital route for interregional and commercial traffic. The Otay Mesa POE is California’s busiest commercial border crossing with approximately 1.4 million truck crossings accounting for approximately $36 billion in goods in 2010. Continued growth in goods movement through the Otay Mesa POE has led to increased demand on the SR 905 corridor, and it is expected to continue to expand over time.

The SR 905 project includes a six-lane extension that will connect the Otay Mesa POE to I-5, I-805, and the South Bay Expressway. These improvements are intended to ease congestion and help move import and export goods more efficiently. The improvements are partially funded by the TransNet program. Improvements to the SR 905 Corridor will also benefit the planned addition of a third border crossing – Otay Mesa East – and connecting toll road, SR 11. SR 11 will extend a four-lane highway two miles east from SR 905 to the new crossing. The new highway and port of entry will ease congestion and reduce lengthy border wait times at the existing Otay Mesa POE. Construction is scheduled to begin in 2013, contingent on funding.
Getting Around the Region

1. Average Weekday Freeway Travel per Person

Data: Freeway vehicle miles of travel (VMT), County Population
Period: Calendar Years 2006 through 2009
Days: Weekdays (Monday through Friday)
Hours: 6:00 to 10:00 a.m., 3:00 to 7:00 p.m.

2. What Roadways Do We Use?

Source: SANDAG, San Diego Regional Model, Series 12 Forecast, 2011 RTP Model Network
Data: Vehicle miles of travel (VMT), Lane-Miles
Period: Calendar Year 2011
Days: Weekdays (Monday through Friday)
Hours: All

3. Weekday Transit Passenger Miles

Sources: San Diego Metropolitan Transit System, North County Transit District, SANDAG Passenger Counting Program Reporting
Datum: Passenger miles of travel
Period: Fiscal Years 2007 through 2011
Days: Weekdays (Monday through Friday)
Hours: All

4. Weekday Transit Ridership

Source: San Diego Metropolitan Transit System, North County Transit District, SANDAG Passenger Counting Program Reporting
Datum: Transit boardings for selected routes
Period: Fiscal Years 2009 and 2011 (July–June)
Days: All
Hours: All

5. Weekday Transit Passengers per Revenue Mile

Source: San Diego Metropolitan Transit System, North County Transit District, SANDAG Passenger Counting Program Reporting: Passenger boardings and revenue miles, includes fixed-route buses, Trolley, COASTER, and SPRINTER. Excludes Coronado Ferry
Period: Fiscal Years 2007 through 2010 (July – June), Year 2011 data reflect calendar year data sets.
Days: Weekdays (Monday through Friday)
Hours: All

6. Average Hour Bus and Rail Ridership

Source: San Diego Metropolitan Transit System, North County Transit District, SANDAG Passenger Counting Program Reporting
Datum: Passenger boardings for Trolley, COASTER, and SPRINTER. Excludes Coronado Ferry
Period: Fiscal Years 2007 through 2010 (July – June), Year 2011 data reflect calendar year data sets.
Days: Weekdays (Monday through Friday)
Hours: All

7. Comparison of San Diego County’s Fixed Route Performance with Peers

Period: Fiscal Year 2010 (July – June)
Days: All
Hours: All

8. What Alternative Choices are Travelers Using?

Source: American Community Survey, One-Year Estimates, U.S. Census Bureau
Datum: Means of Transportation to Work (Table BB301)
Geography: San Diego County, California
Period: Calendar Years 2006 through 2010

9. How is the System Working?

9. Annual Peak Period Freeway Delay - Weekdays
Source: Freeway Performance Measurement System (PeMS Version 11.1), Caltrans
Datum: Vehicle hours of delay (35 mph threshold)
Period: Calendar Years 2007 through 2011
Days: Weekdays (Monday through Friday)
Hours: 6 to 10 a.m., 3 to 7 p.m.

10. Regional Bottlenecks

Source: Freeway Performance Measurement System (PeMS Version 11.1), Caltrans
Datum: Vehicle hours of delay (35 mph threshold) by selected freeway segment
Period: Calendar Years 2007 through 2011

11. Delay by Freeway During Commute Periods

Source: Freeway Performance Measurement System (PeMS Version 11.1), Caltrans
Datum: Vehicle hours of delay (35 mph threshold)
Period: Calendar Year 2011
Days: Weekdays (Monday through Friday)
Hours: 6 to 10 a.m., 3 to 7 p.m.

12. 2011 Top 10 Transit Routes by Ridership

Source: San Diego Metropolitan Transit System, North County Transit District, SANDAG Coordinated Plan
Datum: Transit boardings for selected routes
Period: Fiscal Years 2009 and 2011 (July–June)
Days: All
Hours: All

13. Transit Ridership of TransNet Supported Services

Source: San Diego Metropolitan Transit System, North County Transit District, SANDAG Passenger Counting Program Reporting
Datum: Transit boardings for selected routes
Period: Fiscal Years 2007 through 2011 (July–June)
Days: Weekdays (Monday through Friday)
Hours: All

14. Average Weekday Travel Source: Freeway Performance Measurement System (PeMS Version 11.1), Caltrans
Datum: Average vehicle miles traveled (VMT) per weekday
Period: Calendar Year 2007 through 2011

15. Average Freeway Travel Time Source: Freeway Performance Measurement System (PeMS Version 11.1), Caltrans
Datum: Average vehicle miles traveled (VMT) per weekday
Period: Calendar Year 2007 through 2011

16. Freeway Travel Time Reliability

Source: Freeway Performance Measurement System (PeMS Version 11.1), Caltrans
Datum: 50th percentile (median) departure travel time, 95th Percentile departure travel time
Period: Calendar Years 2007 through 2011

17. Average Weekday Transit Ridership Source: San Diego Metropolitan Transit System, North County Transit District, SANDAG Passenger Counting Program Reporting
Datum: Transit ridership at selected route screenline Period: Fiscal Years 2007 through 2011 (July – June)
Days: Weekdays (Monday through Friday)
Hours: All

18. Average Daily Traffic

Source: Caltrans Data Traffic Branch Website (http://www.dot.ca.gov/hq/trafficsys/safeterr/trafficdata/)
Datum: Annual Average Daily Traffic Volume (AADT)
Period: Calendar Year 2010
Days: All
Hours: All

19. Average Daily Traffic by Day of Week

Source: Freeway Performance Measurement System (PeMS Version 11.1), Caltrans
Datum: Average Daily Traffic, Traffic Census Station 118980 (I-5 @ Harbor Drive/Vandergrift Blvd.)
Period: Calendar Year 2010
Days: Weekdays (Monday through Friday)
Hours: All

20. Corridor Delay and Travel

Source: Freeway Performance Measurement System (PeMS Version 11.1), Caltrans
Data: Monthly Total Vehicle Hours of Delay (60 mph threshold), Monthly Total Freeway Vehicle Miles of Travel (VMT)
Period: Calendar Years 2007 through 2011, except I-5SR 163 Corridor (Calendar Years 2002 through 2011)
Days: All
Hours: All