An innovative strategy developed by the San Diego Metropolitan Transit Development Board (MTDB) for increasing the role public transportation plays in meeting our region's mobility needs over the next 20 years.

January 2001
TransitWorks Strategic Plan Report

January 2001

Prepared by
San Diego Metropolitan Transit Development Board
1255 Imperial Avenue
Suite 1000
San Diego, CA 92101-7490
619.231.1466

The preparation of this report has been financed in part through a grant from the United States Department of Transportation, Federal Transit Administration, under the Urban Mass Transportation Act of 1964, as amended, as passed through by the San Diego Association of Governments, and in part by local funds from the authors.

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the United States Department of Transportation. This report does not constitute a standard, specification, or regulation.
Contents

Executive Summary 3
Introduction 8
Survey of the Population 9
Attitudes and Preferences 11
Market Segmentation 13
Competitive Positioning 16
Description of Future Scenarios 21
Cost Estimates 30
Transit Accessibility 32
Public Involvement Process 34
Adopted Statement of Strategy 35
Implementation 36

TransitWorks

A New Approach to Transit. A Better Way to Go.
Executive Summary

Introduction

This report provides an overview of the development of TransitWorks, MTDB's strategic planning program. The process formally began in November 1998 and concluded with adoption of a Statement of Strategy in October 2000 that outlined the MTD Board's vision for transit over the next 20 years.

Like most other transit agencies in the United States, the San Diego Metropolitan Transit Development Board (MTDB) had never developed a strategic plan. Strategic plans allow agencies to take a step back from their regular activities of developing individual transit projects and putting out fires so that they can consider the big picture and adjust their activities accordingly. MTDB decided on a market-based approach to developing its strategic plan; by focusing on the needs of residents of the San Diego metropolitan region, the agency hoped to better match services to actual market needs.

Market Survey Results

Since market data forms the backbone of any private sector strategy, MTDB and its sister agency, the North County Transit District (NCTD), and the City of San Diego collected extensive data about all travelers within the San Diego metropolitan area. The market survey identified the attitudinal factors that influence a person's decision on modal choice – that is, their decision whether to drive or use transit. Two of these attitudes – sensitivity to one's personal travel experience and one's need for flexibility and speed – proved to be the key factors in leading to the segmentation of the San Diego market into six discrete groups of travelers: Road Runners, Cautious Runabouts, Intrepid Trekkers, Flexible Flyers, Conventional Cruisers, and Easy Goers. Each of these groups varies in the relative degree of sensitivity to the attitudinal factors and, therefore, has somewhat different travel needs. In addition, a Competitive Positioning Analysis was conducted to better understand the trade-offs travelers make when considering transit for different trip purposes.

Factors Influencing the Future of Transit

Four alternative future scenarios were developed in order to allow the Board to better understand the range of roles that public transportation could play. These four scenarios were based on four key factors that, together, define the extent to which transit can meet regional mobility needs: capital funding, operations funding, the degree of transit/land use coordination, and adoption of measures and policies to give priority to transit vehicles. The four scenarios, each of which is based on a different mix of the base factors, are in the following outline, with "Low" representing the baseline assumption, "Moderate" representing some measurable increase over the baseline case, and "High" representing a significant regional commitment:

It was also essential to estimate and map regional travel patterns to identify the core movements in the region. An extensive analysis was done of origins and destinations as part of this process.
Service Concepts

In developing the strategic plan, emphasis was placed on defining the overall vision for transit over the next 20 years. Specific tactics, such as service routing details, the phasing of improvements, and transit technologies, will be identified during the implementation phase. The process stressed the identification of the service characteristics needed in order to attract new riders, as opposed to a purely modal focus that treats the merits of a particular bus or rail technology as fixed elements. Four service concepts were identified:

- **Green Car** — Aimed at community-level tripmaking;
- **Blue Car** — Aimed at serving short-distance trip needs (0-5 miles), primarily as part of a network of basic mobility services;
- **Red Car** — Aimed at serving medium-distance tripmaking (1-9 miles); and
- **Yellow Car** — Aimed at serving longer-distance trips (6+ miles).

Each of the four possible future scenarios discussed below contain a different mixture of these service concepts, based on which kinds of services are needed to attract different market segments and the amount of funding available in each scenario.

Scenario Descriptions

The four alternative scenarios were evaluated based on network structure, system performance, and customer experience. In addition, a qualitative description was offered on how the region would look and feel from the point of view of someone living in 2020 given each scenario.

Scenario 1 — “Basic Mobility” Development in the region will continue to spread outward in low-density patterns. Congestion will be common in some areas even during off-peak hours because of a continued dependence on automobiles for every trip. The design of new communities does not accommodate alternatives like walking, cycling, or transit.

Scenario 1 is a “worst-case” in which TransNet has not been reauthorized. Without a sustained level of financial resources, transit will be forced to do the best it can with less. Its primary task will be to serve those without other transportation options. Resources will have to be shifted from those areas with low productivity to those where ridership potential is greater.

Scenario 2 — “Mobility Plus” The reauthorization of TransNet would provide transit 1/6 of a cent for a 20-year period, resulting in an infusion of funds to permit some expansion of service. Many market segments will not be attracted to transit because too little of the system would provide the kinds of services that they would respond to. Most of the region will continue to grow as low-density sprawl.
MTDB's primary focus would remain that of providing a web of basic mobility services to meet the needs of a mostly transit-dependent ridership and beyond them capture a larger share of the Easy Goer market. Service expansions would be concentrated in residential areas that have high transit/land-use coordination. The focus would be on enhancing Red Car service from selected areas to major employment areas. Because of limited funding, an emphasis would be placed on cost-effective, higher-speed, rubber-tired Red Car services that do not require high capital investment.

Scenario 3 – “Region's Second Car” In Scenario 3, transit would be a commonplace travel option for people throughout the region because a wider variety of services would be offered with a wider range of features. There would be more things to walk to, since regional land use patterns would emphasize mixed-use communities.

The focus of Scenario 3 represents a significant departure from previous scenarios. A major infusion of regional funding for both capital and operating improvements would allow MTDB to provide a “second car” option for many residents. A system of Red and Yellow Car core routes would provide a high level of regional interconnectivity during commute periods. These fast services would be given priority in congested areas, and the vehicles and stops would offer a high degree of comfort and security. Transit stops would be enhanced both to provide improved passenger amenities and to create more focus on transit in the community.

Scenario 4 – “Transit First” The San Diego region would finally curb its appetite for consuming land by more careful attention to the design of new development. Many residents would come to realize that they actually like compact urban development because of the sense of community it gives, as well as the variety of travel and housing options it affords. It would be easier to walk or use a bicycle, and most parts of the region would offer a variety of nearby transit services. Traffic congestion would still exist, but not at the extent of previous scenarios, and there would be plenty of options to avoid it.

Scenario 4 would add an all-day component to the commute trip orientation of Scenario 3. Transit would go beyond simply being a realistic choice for more people, to become the first choice for many trips. The extensive network of Yellow Car and Red Car services would be expanded to provide a high level of service and regional connectivity throughout the day. The aim is a superior customer experience in which significant attention is paid to the total transit experience. Pedestrian access to transit would be subject to significant attention, with the sidewalk environment improved to create a pleasant and safe walk experience. All stations would have design elements that make transit a focal point of activity within the community.
Costs and Transit Accessibility

Order-of-magnitude capital and operating costs are summarized below for each of the four scenarios. In addition, a comparison of transit accessibility for each scenario is also provided:

<table>
<thead>
<tr>
<th>Scenario 1 Basic Mobility</th>
<th>Scenario 2 Mobility Plus</th>
<th>Scenario 3 Region’s Second Car</th>
<th>Scenario 4 Transit First</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-Year Capital Costs*</td>
<td>$1.5 Billion</td>
<td>$2.1-2.3 Billion</td>
<td>$4.8-5.7 Billion</td>
</tr>
<tr>
<td>Annual Operating Costs (Subsidy)*</td>
<td>$70 million</td>
<td>$92-96 million</td>
<td>$134-168 million</td>
</tr>
<tr>
<td>Residential 1/2 Mile Access**</td>
<td>10%</td>
<td>25%</td>
<td>48%</td>
</tr>
<tr>
<td>Employment 1/4 Mile Access**</td>
<td>15%</td>
<td>30%</td>
<td>43%</td>
</tr>
</tbody>
</table>

*All cost figures are in year 2000 dollars. Subsidy calculations are based on current subsidy levels, and could be vastly different from numbers reported here based on decisions as to fares and projections of ridership.

**Access figures are for Red and Yellow Car service only; Access is higher if Blue and Green Car services are included.

Adopted Statement of Strategy

In developing a strategic plan, many members of the public and elected officials alike suggested that MTDB develop a plan based on “thinking outside the box” and “creating a new paradigm for transit.” Certainly, the development of the present light rail system represented such forward thinking for planners back in the late 1970s. The Scenario 4 – Transit First approach best represents creation of a new vision for public transportation.

The overall tenor of the public input received proved to be very positive. There was widespread support of the market-based approach and for significantly increasing the role of transit in the region, with the “Region’s Second Car” and “Transit First” scenarios generating the most interest. There was an acknowledgement that these scenarios will require a greater regional commitment to transit, but most of the input indicated that this should not prevent MTDB from deciding to pursue a bolder strategy.

At its October 26, 2000, meeting, the MTD Board of Directors adopted a policy position to pursue Scenario 4 – Transit First as its Statement of Strategy on the role transit will play in the MTDB area over the next 20 years and beyond. “Transit First” sets the stage for how MTDB suggests the region could look and feel in the year 2020 and beyond, consistent with the vision statements in the San Diego Association of Governments’ (SANDAG’s) Region2020 planning process and the City of San Diego’s Strategic Framework effort. The adoption of a “Transit First” policy sends a signal of transit’s support for making this change happen.
Implementation Plan

With the adoption of the “Transit First” policy, a plan will be developed to outline how the implementation of this policy will take place. Near-term work tasks will include:

- Working with SANDAG to incorporate the Transit First policy into its Regional Transportation Plan update and into its Region2020 process, as well as identifying transit funding sources.

- Working with Caltrans and local jurisdictions on developing a plan for use of freeway and arterial street transit priority measures.

- Continuing coordination efforts with the City of San Diego on its Strategic Framework process to better integrate transit with the urban form/land use alternative being evaluated.

- Identifying possible near-term demonstration projects to showcase the TransitFirst policy.
Introduction

Like most other transit agencies in the United States, MTDB had never developed a strategic plan. Strategic plans force organizations to step back from their day-to-day work of developing projects and putting out fires and instead consider the big picture. MTDB began its strategic planning by hiring a planning and programming consultant to aid with the design and execution of the planning process. This consultant worked intimately with MTDB staff to identify key organizational issues involved in conducting so far-reaching an effort, then set about researching global "best practices" to formulate a robust strategic planning process.

The "best practices" study involved reviewing what other cities around the world were doing to improve their transit services. Of an original list of over 30 cities, eight cities were selected for further study due to the innovative or far-reaching nature of their planning efforts. The best elements of these planning efforts served as the basis for the development of our strategic plan. We named the process TransitWorks to give it a unique identification in the minds of staff, the Board, and the public at large.

Our study of transit planning in leading global cities was sobering. Few transit agencies did true strategic planning, at least as commonly undertaken in the private sector. The most significant divergences include the absence of modern market research techniques, neglect in the positioning of service vis-à-vis its competing modes, and the failure to restructure an agency to provide its management and employees with the incentives to carry out the final strategy. While these elements are ubiquitous in the strategies of private sector companies, they appeared to be rare or absent among transit agencies in the United States.

MTDB set up a seven-step process for developing its strategic plan that would model the process used throughout the private sector and especially among the world's most successful companies. These steps were:

1. Survey MTDB's service population;
2. Identify the critical attitudes and preferences that drive people's travel choices;
3. Segment the Market into Clusters based on shared attitudes and preferences;
4. Conduct a competitive positioning analysis to identify the relative strengths and weaknesses of existing transit services;
5. Prepare alternative future scenarios;
6. Formulate strategies within each of these future scenarios; and
7. Develop an implementation plan based on the preferred strategy.

To accomplish these seven steps, MTDB assembled a team of consultants (including The Mission Group as planning and programming consultant, Cambridge Systematics as the technical consultant, and MNA Consulting and Wade Communications as regional communications and collaboration consultants), MTDB staff, and key representatives from other agencies. This group met weekly throughout the 12-month process. The Board attended five Saturday morning workshops and heard numerous presentations during its regular Board meetings. MTDB staff also made a concerted effort to invite stakeholders and the general public to participate and be informed throughout the planning process.
Survey of the Population

The most glaring deficiency of most transit plans is the almost complete lack of comprehensive data about the structure and responsiveness of urban transportation markets. Very few transit agencies have conducted research into the behavior of their local markets, but the few transit strategic plans that have been built on such market studies appear unusually robust and creative in their approach to transit systems development.

Market data forms the backbone of virtually any private sector strategy. As an example, Southwest Airlines – one of the most successful airlines today – conducted extensive surveys not only of all current air travelers but also of people who did not use air travel but might if the service met their needs. In contrast, transit agencies commonly conduct only on-board surveys and use the results to refine services. Yet the vast pool of potential riders are those not riding, and it is their needs that are not being served by the current transit service. Therefore, MTDB and its sister agency NCTD set out to collect extensive data about all travelers within the two service areas, both transit riders and nontransit riders alike. What's more, the agencies sought to profile people traveling for all trip purposes, not just home-to-work.

In more technical terms, the objective of this survey was to collect sufficient data to segment the traveler market and quantify the trade-offs members of each market segment make when considering their travel options. This required collecting the following detailed information from each traveler surveyed through a statistically valid sample of the MTDB and NCTD service area population:

- Socioeconomic characteristics;
- Attitudes towards everyday travel;
- Preferences towards different types of transit service;
- Current travel and mode choice behavior; and
- Trade-offs among a range of transit and highway service attributes.

The research made use of a telephone/mail survey combination. This approach was justified by the resultant high level of cooperation and a high survey return rate. It also allowed MTDB to employ a customized experimental design that obtained detailed information about travelers' choice behavior and its determinants.

Respondents were first recruited through a telephone survey that collected information about their typical everyday commute and their typical nonwork trips.

The mail survey included a battery of attitudinal statements that covered many aspects of everyday travel, a list of perceptions about transit service, a set of up to three "choice experiments" for commute travel, and up to another three experiments for noncommute travel. These "choice experiments" asked respondents to choose among auto, transit, and carpool alternatives given trip characteristics; for example, one choice experiment might have asked what mode the respondent would choose if their commute drive were ten minutes longer, but their transit trip were twenty minutes shorter. Since each experiment was customized for each individual respondent, based on the trips they described in the telephone survey, respondents were dealing with real trips they commonly make. The experiments differed in terms of the trip purpose being considered, the transit and highway levels of service being compared, the transit technology that was being presented (such as train, trolley, bus, shuttle bus, and "train on tires"), and other trip characteristics, such as walking time, waiting time, and out-of-pocket costs.
The market survey covered both the MTDB service area (the southern and central areas of metropolitan San Diego County) and the NCTD service area (the northern area of metropolitan San Diego County). The sampling plan focused separately on the MTDB area, with a 2000 population of approximately 2.14 million, and the NCTD service area, with a population of approximately 750,000.\(^1\) Spanish versions of the recruit interview and the survey instrument were also developed to reach the majority of respondents in the study area in their native language.

The response rate in both transit board areas was very satisfactory. In San Diego, 1,250 respondents participated in the recruit call and agreed to fill out the questionnaire. A total of 501 completed questionnaires were returned, representing a response rate of 40 percent. A similarly high response rate was achieved for North County; 245 complete questionnaires were received from 535 completed recruitment calls, resulting in a response rate of 46 percent.

The representativeness of the resulting sample was also very satisfactory along important socioeconomic and travel behavior characteristics. For example, the level of automobile ownership and the usage of highway modes for work trips were almost identical to the 1990 Census. Similarly, the distribution of incomes ranging between $15,000 and $75,000 tracked very closely with Census estimates. Moreover, the adjusted age distribution, which accounts for the recruitment of respondents 14 years or older, was also quite comparable, especially in the 31- to 50-year range.

\(^1\)A set of weights was used for the analysis to reflect the overrepresentation of North County respondents in the sample by using a normalized weight of 0.62 relative to the respondents from San Diego who were assigned a normalized weight of 1.18.
Attitudes and Preferences

Sophisticated companies learned long ago that a consumer's choice is a reflection of his or her attitudes and preferences; these preferences form the basis for segmenting markets into discrete groups. A new mutual fund, for example, may target the risk-adverse who want long-term growth in value but who also want to avoid investing in environmentally irresponsible companies. The fact that these investors may be typically white or African-American, old or young, rich or poor, etc., may not directly help a company reliably predict their buying behavior. Market segmentation based on attitudes and preferences, therefore, can provide a far more detailed and useful understanding of consumer behavior than one based on demographic characteristics. Thus, MTDB used its market survey to learn the travel preferences and attitudes of the residents of its service area with an eye to grouping like-minded individuals into “segments” whose needs can then be more directly addressed.

Market segmentation can be a powerful tool to understanding and responding to the needs of consumers or customers. The market segmentation schemes traditionally used in transportation planning, however, are most often based on socioeconomic characteristics such as income, gender, or automobile ownership, or on some stated “disposition” to using transit – a tautology that ignores why that disposition exists or does not exist. The problem with such limited segmentation schemes is that they miss out on the real issues: what people perceive as their needs, their preferences, and their options. To get at these issues, MTDB’s market survey focused on attitudes toward all aspects of a person’s travel experience.

Survey respondents were asked to rate 34 attitudinal statements by indicating their degree of agreement on a scale of zero to 10, with zero indicating a strong disagreement with a statement and 10 meaning a strong agreement. These statements covered travelers’ attitudes towards issues such as travel time, the cost of commuting, feelings of safety, perceptions of transit riders, lifestyle choices, and the flexibility and convenience offered by competing travel modes.

The survey responses were analyzed using a statistical technique known as factor analysis. This technique identifies patterns of responses, and in this way allows a large number of variables to be condensed down into a smaller and more manageable set of factors. The factor analysis resulted in the clustering of the 34 statements into eight key attitudes, which reflect respondents’ thinking about their everyday travel.

The interpretation and naming of each attitudinal dimension is illustrated by examining travelers’ “need for flexibility and speed.” Within this broadly defined attitudinal construct, the statement “I need to make trips to a wide variety of locations each week” serves as the anchor and most important statement. This statement, along with the statements on “flexibility for multiple trips” and “being in a hurry,” help define this attitudinal dimension. These statements on rigid schedule and the trade-offs between the cost and convenience of different travel options further contribute to the interpretation of this attitudinal dimension. The statements are listed in order of their relative weight in creating the attitudinal construct.

*In addition to the a priori expectations about the relationships among the various statements, exploratory factor analysis was used to empirically test and confirm these relationships and to identify additional relationships. A confirmatory factor analysis model was then developed that combined the overall structure of the exploratory factor analysis with expectations of how the attitudinal statements were related to one another. The confirmatory factor analysis resulted in the eight latent variables that represented the key underlying attitudinal dimensions.
1. **Need for flexibility and speed** reflects respondents' need to make trips to multiple locations each week, the flexibility to make multiple trips in a single day, and their willingness to pay a higher fare for convenience.

2. **Sensitivity to personal travel experience** corresponded to travelers' sensitivity to delays, their view of other transit users as different from themselves, the linkage between mode choice and social status, and travelers' preference for the freedom to drive by themselves.

3. **Sensitivity to personal safety** included statements that expressed travelers' desire to avoid certain places and situations and their increased likelihood of feeling insecure.

4. **Concern for the natural environment** reflected travelers' belief that transit usage can help the environment and their corresponding willingness to change mode or to pay more in order to protect the environment.

5. **Sensitivity to use of time** corresponded to travelers' need to reduce the time spent traveling and their desire to use their time productively while traveling.

6. **Sensitivity to transportation costs** included statements about the trade-offs between cost and travel time that travelers are likely to make when choosing a mode.

7. **Sensitivity to crowds** reflected travelers' desire for privacy and the trade-offs between crowding and speed associated with everyday commutes.

8. **Sensitivity to stress** reflected travelers' attraction to a short walk and the scheduling of trips so that the stress associated with everyday commutes could be minimized.

Two of the attitudinal factors – the need for flexibility and speed and sensitivity to the personal travel experience – proved to be the key factors in distinguishing among the distinct market segments that emerged later. These results defied common stereotypes and led to the segmentation of the market into six discrete groups of travelers, as discussed on the following page.
Market Segmentation

The objective of market segmentation is to identify distinct groups within the population that share the same set of values when making their transportation mode choices. Respondents' attitudes towards their everyday travel experience were used to identify segments that were internally homogeneous and that differed markedly from the other segments. Using cluster analysis, scores were calculated to group together travelers on the basis of their similar attitudes. As a parenthetical observation, the market segments did not follow traditional groupings of transit users, such as transit dependents and choice riders. Since the overwhelming number of San Diegans belong to the choice market; the goal of the segmentation exercise was to better understand just how members of this dominant market make their transportation decisions.

The cluster analysis suggested that the best segmentation scheme contained six market segments. The significant differences among the six segments could be best explained by three of the eight key attitudes discussed earlier. These three attitudes were the "need for flexibility and speed," the "sensitivity to personal travel experience," and the "sensitivity to personal safety." The segmentation process had four steps:

1. Divide the respondents into two groups based on their need for flexibility and speed. These two groups of respondents were roughly equal in size.

2. Subdivide the respondents with a low need for flexibility and speed into two smaller groups based on their degree of sensitivity to personal travel experience.

3. Subdivide the respondents with a great need for flexibility and speed into three groups based on their high, medium, or low sensitivity to personal travel experience.

4. Subdivide the group of respondents with a medium degree of sensitivity to personal travel experience into two smaller groups based on travelers' different attitudes towards personal safety.

A total of six distinct market segments were identified. Each segment was given a catchy moniker to distinguish it during TransitWorks presentations and effectively communicate its unique characteristics to the general public.

1. **Road Runners** are characterized by travelers with both a high need for flexibility and speed and a high sensitivity towards their personal travel experience. Road Runners represent a small part of the entire market but are very demanding travelers who have an auto available at all times and are the least likely travelers to have used transit in the past. Road Runners have much higher incomes than the average for the study area; they exhibit the

1. As part of the exploratory cluster analysis, the consultants experimented with the number of segments ranging from four to 10 different segments using the similarities across some of the key attitudes as the basis for clustering.
highest home-ownership rate and are more likely to live in the east suburban areas of the study area. They also include a proportionally large number of homemakers.

2. Cautious Runabouts are also characterized by their high need for flexibility and speed but have a medium level of sensitivity to their personal travel experience. They also tend to be more concerned about their personal safety than other segments. The age of this segment’s members is concentrated in the 31- to 50-year category. This segment consists mostly of female respondents with an overrepresentation of part-time workers and homemakers who are more likely to live in the northeast county.

3. Intrepid Trekkers exhibit a need for flexibility and speed, have a medium level of sensitivity to their personal travel experience, and are generally not concerned with personal safety. This segment is dominated by male full-time workers who take the highest percentage of commute trips, have the second highest income level in the population, and have an auto available to them at all times.

4. Flexible Flyers have a high need for flexibility and speed but are not sensitive to their personal travel experience. This small segment of the market has a lower income level than the average for the San Diego region, with household incomes concentrated in the $15,000 to $35,000 range, and also the lowest level of home ownership. Members of this market segment are more likely to be part-time workers, be between 31 and 40 years old, and live in multifamily units. Most Flexible Flyers live in the North County coastal (northwest) area.

5. Conventional Cruisers do not have a particular need for flexibility and speed, but they are highly sensitive to their personal travel experience. Although this segment has a younger average age than all other segments, it actually contains both the majority of people under the age of 22 and over the age of 60. Members of this group tend to have an auto available at all times and come from households with higher than average incomes.

6. Easy Goers exhibit neither a need for flexibility and speed nor a sensitivity to their personal travel experience. These are the least demanding travelers with the lowest income in the study area, and represent a mix of retirees over the age of 60 and a rather large proportion of students in the San Diego region. Easy Goers are the heaviest users of transit services, have the lowest level of automobile availability, and have the second lowest level of home ownership. Easy Goers are more likely to be single respondents living in multifamily units and are more likely to be found in the south suburban part of the study area.

Given the size of our sample, we suspect that these same market segments prevail throughout metropolitan areas in the United States, though their proportions may vary. The market segments and their chief attributes are summarized as follows.
Market Segment and Major Attributes

<table>
<thead>
<tr>
<th>Segment</th>
<th>% of Local Population</th>
<th>% of Local Transit Riders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Runners</td>
<td>High need for flexibility and speed, and high sensitivity to the personal travel experience.</td>
<td>12</td>
</tr>
<tr>
<td>Cautious Roundabouts</td>
<td>High need for flexibility and speed, but indifferent to the personal travel experience; distinguished from Intrepid Trekkers by their concern for personal safety.</td>
<td>12</td>
</tr>
<tr>
<td>Intrepid Trekkers</td>
<td>High need for flexibility and speed, but indifferent towards the personal travel experience; distinguished from Cautious Roundabouts by their unconcern about personal safety.</td>
<td>14</td>
</tr>
<tr>
<td>Flexible Flyers</td>
<td>High need for flexibility and speed, but low sensitivity to the personal travel experience.</td>
<td>4</td>
</tr>
<tr>
<td>Conventional Cruisers</td>
<td>Low need for flexibility and speed, but high sensitivity to the personal travel experience.</td>
<td>40</td>
</tr>
<tr>
<td>Easy Goers</td>
<td>Low need for flexibility and speed, and low sensitivity to the personal travel experience.</td>
<td>19</td>
</tr>
</tbody>
</table>

The data in the above table illustrates the diversity that must be accounted for in designing transit services and amenities. Still, the six market segments do not necessarily require six sets of mutually exclusive improvements. Certain improvements can appeal to more than one market segment.

It is important to avoid assigning an individual to a segment based on one or even three or four demographic characteristics. Having a high income, for example, does not categorize an individual as a Road Runner; there are some Easy Goers with high incomes. Nevertheless, it was possible through very sophisticated statistical modeling to predict segment membership using a number of socio-economic characteristics. While these models are not perfect, they are robust enough to use the SANDAG travel behavior survey of about 2,200 households to segment reliably the population of San Diego County by the six metropolitan statistical areas. If the travel survey had a larger sample, this segmentation could be applied reliably to the 16 jurisdictions in the County or even to smaller geographical areas.
Approach

A critical objective of this study was to conduct an analysis of travelers’ mode choice behavior to better understand the trade-offs travelers make when considering (or not considering, as the case might be) whether to use transit for different trip purposes. This analysis permitted MTDB to understand the position of its current services and potential new services in the market place for local travel. The concept, just as with any product or service offered to people, was to plot one’s offerings and those of one’s competitors along the attributes of local travel that potential customers have indicated are most important. Many existing local bus services, for example, have a certain position along an Easy Goers “value curve” and a different position on a Road Runners “value curve.” This position determines the competitiveness of the service relative to auto travel (which is also mapped on the same value curve). Competitive positioning enabled MTDB to understand what it needed to change to compete more effectively for any particular market segment’s patronage.

That public transit relies on its cost “leadership” for its competitive advantage should come as no surprise. MTDB is an above-average performer, capturing a large share of price-sensitive travelers. This traditional competitive position, however, vastly oversimplifies the dimensions on which public transit actually competes at present and can compete in the future. The competitive positioning analysis, therefore, made use of all eight of the key factors*, including cost. Competitive positioning requires examining how well MTDB has achieved parity or superiority in each of the eight dimensions relative to its competitors. To be competitive for any given market segment, MTDB first had to identify the factors for which it cannot achieve parity or superiority to competing modes (e.g., private cars) and the factors for which it can. For a given market segment, MTDB must offer a “package” combination of service attributes that together will be more attractive than the “package” offered by competing modes. By using the choice models to quantify the trade-offs between these factors (i.e., weighing the relative importance of speed and flexibility versus a person’s sensitivity to crowds), the TransitWorks team could “unbundle” the combination of factors that determine its current competitive position and select the factors on which MTDB will compete for riders in the future. In other words, MTDB could identify what it was doing right and what it would need to do differently if it were to attract new riders to transit.

The ability of MTDB to penetrate a specific market segment begins with an accurate and sufficiently sophisticated understanding of the trade-offs that people make when choosing between alternative modes or whether or not to make a trip at all. The choice models that MTDB developed provided such an understanding. These choice models showed how improvements or reductions in any one of a large number of attributes of auto, carpool, and transit services would ultimately increase or decrease the percentage of people who would likely choose those modes. Armed with this understanding and the six market segments, the value curves were created for each market segment. A spreadsheet model was then developed to evaluate alternative competitive positions for a wide variety of trip types and formulate service delivery strategies that would cater to preferences across market segments. The development of choice models provided significant advantages for a segment-by-segment evaluation to identify gaps that exist in the current services and alternative potential services. This approach also uncovered potential markets that are currently not served at all. The TransitWorks program is only the beginning of this type of market evaluation; further study will enable MTDB to develop a comprehensive and more detailed performance audit of all transit services.

*Need for flexibility and speed, personal travel experience, personal safety, concern for the natural environment, sensitivity to use of time, transportation costs, sensitivity to crowds, and sensitivity to stress.
Competitive positioning involves an extensive analysis of travelers' choice behavior by market segment to explore differences in travelers' sensitivity to different aspects of transit and automotive service. A total of 48 transit alternatives were included as options in the choice experiments. The mode choice models and trade-offs were based on the stated-preference survey where individual travelers were presented with up to six different travel scenarios. In each comparison, travelers were presented with a drive alone, carpool, and one of the 48 transit options that differed in terms of technology and the need to transfer.

The transit options included six different types of transit technology, which were combined with different levels on the number of transfers needed for different trips. These different technologies included:

- Conventional transit bus service operating on local streets;
- Shuttle buses circulating in city neighborhoods;
- Commuter express bus service utilizing area freeways;
- Trolley service operating mostly in its own right-of-way;
- "Train on Tires," a rubber-tired technology with a similar appearance to a trolley vehicle, operating both on its own tracks and on local streets and freeways; and
- Commuter rail service.

A number of mode choice models were developed from the survey responses to capture the attributes most important to individual travelers and to help predict their travel choices under different highway and transit service scenarios. These models helped MTDB understand how the highway modes compete with transit service by quantifying the trade-offs that individuals make between the "bundles" of service that were offered to them. These "bundles" of service were characterized by policy-sensitive service attributes (that is, aspects of service that are set by agency policy, as opposed to aspects which are beyond the control of the agency), revealing differences in sensitivity across segments and trip purposes for:

- In-vehicle travel times by highway and transit modes;
- Access, egress, and wait times for transit service;
- The need to transfer vehicles as part of a transit trip;
- For automotive travel, walking time (to/from parking) and the time spent searching for parking; and
- Parking costs and transit fares, taking into account whether costs were subsidized.
Results of Competitive Positioning

The results of the competitive positioning analysis provided MTDB with useful insights into travelers' sensitivity towards service attributes for different modes, market segments, and trip purposes. Some highlights of these results include:

- **Seat availability**, a variable that also relates to the interior configuration of transit vehicle and the transit technology type, had a positive but ultimately minor impact on the attractiveness of transit.

- **Automobile ownership** (the number of cars per adult owned by a household) had a significant impact on the attractiveness of single-occupant driving and carpooling. As expected, automobile ownership had a stronger impact on the choice to drive alone compared to the choice to carpool, reflecting the lower likelihood of forming a carpool when not constrained by the limited availability of an automobile in a household.

- **In-vehicle travel time** (IVTT) sensitivity varied by trip purpose, market segment, and by highway versus transit mode. But in all cases IVTT was highly significant, indicating both the importance of this service attribute and the benefits of differentiating its impact across segments, purposes, and modes. As expected, travelers on a commute trip were found to be more sensitive to IVTT than those on a noncommute trip. This relationship held true not only for the market as a whole but also within each market segment. In particular, Road Runners and Cautious Runabouts were found to be the most sensitive to IVTT compared to the rest of the market. This finding is consistent with the busier and more demanding travelers in need of flexibility and speed. At the other end of the spectrum, Conventional Cruisers and Easy Goers were the least sensitive to IVTT, reflecting their low need for flexibility and speed. Furthermore, the impact of equivalent travel-time savings was greater on the highway modes compared to the competing transit mode. Put another way, most people valued saving a minute driving more than they did saving a minute on transit.

- **Time spent searching for parking** is directly related to both the availability and the cost of parking options at a traveler's destination and can vary considerably depending on land use policies. Respondents on a commute trip were also found to be more sensitive to time spent searching for parking than respondents on a noncommute trip, reflecting their different sensitivity to arriving late. Furthermore, respondents were found to be more sensitive to savings in the time spent searching for parking than to an equivalent reduction in IVTT for both travel purposes.

- **Wait time for transit** was a strong disincentive for commute trips, especially for Cautious Runabouts, Conventional Cruisers, and Easy Goers, for whom it was between 3.9 and 4.4 times as onerous as in-vehicle time; on the other hand, it was no more burdensome than IVTT on average for noncommute trips.

- **Walk time** reflected the sum of access and egress walk times for the transit mode and represented egress walk time for the auto modes (that is, walking time from parking space to final destination). Respondents were found to be about as sensitive in general to the time spent walking to/from a transit stop or station versus an equivalent time spent walking between their parking location and their final destination, though the sensitivity varied by market segment. The differences among segments reiterated the greater sensitivity.
of travelers belonging to the busy and demanding segments compared to Road Runners and Easy Goers who appear to be the least sensitive to walking to/from transit stops. In relative terms, sensitivity to walk time was up to over five times higher than in-vehicle time for noncommute trips and up to three times higher for commute trips.

- **Transfer Penalty** reflects the perceived inconvenience of transferring (rather than the time actually spent waiting). Responses ranged from a low of two minutes to a high of 12 minutes, with commute transfers generally considered less burdensome than noncommute transfers (perhaps reflecting the higher frequencies of transit services during peak commuting hours). Travelers most familiar with transit service in the San Diego area exhibited among the highest degree of sensitivity to transferring.

- **Cost of travel sensitivity** was barely greater for commute trips especially with respect to transit. The implied values of time reflecting travelers’ willingness to pay for higher quality highway and transit service improvements were highest among Road Runners and Cautious Runabouts. These are the two segments of busy and demanding travelers who also have the highest average income among the various market segments. ¹ One of the surprising results of the market survey, however, was that sensitivity to fares was not particularly strong within any of the market segments, although there are no doubt individuals in each segment for whom cost is of great importance. Overall, however, people appear to be willing to pay more for local travel so long as the mode satisfies the needs to which they are particularly sensitive. This should come as no surprise, since consumers of other products often purchase more expensive items in a product line versus the lower-cost alternatives. Viewing transit as a consumer product is an important lesson since transit authorities worldwide tend to hamstring themselves by doing everything possible to keep fares low, even at the sacrifice of the quality of their systems. This fact alone helps explain why transit does not attract a larger share from several of the market segments. ²

¹This takes into account the cost of parking (adjusted by the number of passengers for the carpool mode) for autos, the transit fare level and, where applicable, the cost of parking at the transit park-and-ride lot. The specification of the travel costs also took into account whether a traveler’s employer subsidized part of the travel costs, assuming a cost of zero in cases where the employer provided free parking at the work location. In cases where the employer covered at least part of the costs of a monthly transit pass, a different cost coefficient for transit cost was estimated. Different formulations of the cost variable were explored including the adjustment of true out-of-pocket costs by travelers’ income to reflect the income effect on their cost sensitivity.

²This should not be taken to mean that fares should be universally raised on transit; indeed, there are significant groups of people for whom price is very much an issue, and many people in this group are dependent on transit services to provide them with basic mobility. On the other hand, the research makes clear that services that better meet the needs of more demanding travelers can charge prices that better reflect the actual cost of providing such “premium” services.
The competitive positioning analysis also considered travelers' attitudes towards everyday travel. For example, respondents concerned with the protection of the natural environment and those sensitive to the costs of travel indicated a preference towards transit. This fact suggests the potential appeal of a marketing campaign stressing a positive environmental message and the value associated with transit service. On the other hand, respondents sensitive to their personal travel experience and sensitive to the need for flexibility and speed preferred the auto modes. This suggests the need to improve both the image of transit as well as its service attributes to enhance its appeal to the public.

The spreadsheet model was used to evaluate a range of transit service design options by forecasting the expected market share for potential transit services. The model provided a robust and policy-sensitive evaluation tool that was used to evaluate different kinds of transit service improvements. These improvements include: changes in routing and use of exclusive rights-of-way to reduce transit running times, locating transit stops to improve accessibility, increasing the frequency of transit service, configuration of transit vehicles to improve seat availability, different services offering one-ride versus multiple transfers, use of "train-like" versus "bus-like" infrastructure; the model also was able to measure the impacts of systemwide improvements to network connectivity and performance (the ability of the full transit network to respond to a customer's need for flexibility and speed, which goes beyond the characteristics of any one particular trip) and in system look-and-feel (essentially, the way in which transit infrastructure and configuration responds to a customer's sensitivity to their personal travel experience).

Regional Application

The final step in the market analysis was to apply the insights gained from the market segmentation and the choice behavior analyses to a regionwide level. This allowed the MTD Board to make a comparative analysis of long-range transit plans by quantifying the range of potential market shares for transit under different service scenarios. To translate the findings of the market to a regional level required two additional critical inputs: a validated origin-destination matrix summarizing the daily travel patterns in the study area (for both commute and noncommute trips) and a linkage between the traveler market segments and the trip table.

The travel demand model maintained by SANDAG provides the best available source of travel pattern data. In addition, SANDAG recently conducted a home interview survey that provided us with the same socioeconomic characteristics that were included in the MTDB survey. The market survey questionnaire anticipated this linkage and was designed to mimic some of the questions that SANDAG uses in its periodic surveys of the daily travel patterns of 2,500 county households, allowing MTDB to extrapolate the market data to the larger data set. As a result, it was possible to describe the distribution of members of each market segment on a regional basis. It was then possible to develop strategies designed specifically to capture the prominent market segments in each travel market.

The results of this extrapolation were surprising. It was discovered that the MTDB's service area could be generally divided into three primary zones: South County, Central, and East County. Within each of these zones, there was a notably different distribution of the six market segments. The greatest contrast was between the South and East County, with relatively few residents of South County claiming much of a need for speed and flexibility in their daily travel, as opposed to the majority of residents of East County. The implications for developing optimal transit strategies were quite clear and applied in the sixth step of the process described on the following page.
Factors Influencing Transit in the Future

In mapping out a strategy to guide public transportation investments over the next 20 years, there are four key factors that, together, will help dictate the potential future success of transit in addressing regional mobility needs:

System Development: Capital Funding – Transit infrastructure, be it vehicles, right-of-way, guideways, maintenance yards, storage facilities, and the like, all costs money. The level of capital funding for transit – which is determined at federal, state, and local levels – is therefore a prime determinant of how much transit can grow.

System Development: Operations Funding – The second part of the funding picture involves increased funding for transit service improvements. After infrastructure is bought or built, it must be operated, and virtually all transit services in the U.S. require significant funding beyond what fares are able to generate.

Land Use Coordination – Transit use is as much a function of the number of people who live and work within a short walk or drive of transit as it is of any other factor. The greater the density of residential or commercial development around transit access (stations or stops), the greater the potential increase in ridership, as transit becomes more accessible to greater numbers of people. Success in this area will depend upon close coordination between MTDB, SANDAG, and the local jurisdictions.

Priority Measures for Transit – The increasing congestion levels throughout the region have significant impacts on bus transit operations through increased travel times and reduced system reliability. Not only does this impact ridership, it also results in increased operating costs, since additional vehicles are needed to maintain the same level of service frequency. The use of priority measures for transit vehicles (e.g., High-Occupancy-Vehicle [HOV] or “managed” lanes on freeways, and bypass lanes or signal priority measures on arterial streets) can reverse these impacts on transit operations, as well as serving to close the travel-time gap between transit and the automobile. Likewise, the extent to which transit access is prioritized over parking (for example, by requiring major trip generators to orient their entrances so that the transit access point is closer than the nearest parking spot) helps determine the extent to which transit services become more convenient than driving. Success in this area will require close working relationships with both Caltrans and local jurisdictions.

Various levels of involvement from each of these factors were used to develop four future scenarios around which the alternative strategies were organized. The four scenarios are outlined on the following page, with “Low” representing the baseline assumption, “Moderate” representing some measurable increase over the baseline case, and “High” representing a significant regional commitment:

The Four Constraints on Transit

<table>
<thead>
<tr>
<th>Capital Funds</th>
<th>Operating Funds</th>
<th>Land-Use Measures</th>
<th>Transit Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Money to Build Infrastructure and Buy Vehicles</td>
<td>Money to Operate Vehicles and Maintain the System</td>
<td>The Match Between Transit Investments and Land Use</td>
<td>Roads are Optimized for Transit and Pedestrians</td>
</tr>
</tbody>
</table>

The region’s municipalities, residents, and voters will need to decide whether the benefit of making transit first our region’s strategy is worth the cost. We believe that such a strategy will lead to long-term improvements in our region’s quality of life.
<table>
<thead>
<tr>
<th>Scenario 1: Basic Mobility</th>
<th>Operations Funding</th>
<th>Land Use Coordination</th>
<th>Transit Priority Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario 2: Mobility Plus</th>
<th>Operations Funding</th>
<th>Land Use Coordination</th>
<th>Transit Priority Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Moderate</td>
<td>Low-Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario 3: Region’s Second Car</th>
<th>Operations Funding</th>
<th>Land Use Coordination</th>
<th>Transit Priority Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>Moderate-High</td>
<td>Moderate</td>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario 4: Transit First</th>
<th>Operations Funding</th>
<th>Land Use Coordination</th>
<th>Transit Priority Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

Scenario 1 represented the existing constrained funding plan for transit, as outlined in the 2000 Regional Transportation Plan (RTP), but with the TransNet regional half-percent sales tax not assumed to be reauthorized. While the RTP contained increased transit/land use integration, many of the land use densification assumptions have not been adopted by the affected jurisdictions. Thus, Scenario 1 assumed current trends that enable measurement of the effect of stronger land use coordination measures in the other scenarios.

Scenario 2 is also built around the funding levels established in the RTP, but assumes (in contrast to Scenario 1) that the TransNet regional half-percent sales tax is extended for 20 years (though with a different capital to operating dollar ratio than the present TransNet tax, in favor of transit operations). It also reflects significant attention being paid to optimizing transit’s effectiveness by an emphasis on speeding up existing services, along with having a moderate success in locating new development in areas more directly served by transit.

Scenario 3 further improves the level of land use coordination and transit priority measures, combined with a significant increase in the level of capital and operations funding.

Finally, Scenario 4 involves a significant commitment to improving public transportation’s role in the region.

Future Travel Patterns

In addition to the possible funding levels, land use coordination, and transit priority measures, it was essential to estimate alternative travel patterns that were likely to occur in order to fully develop the four planning scenarios. The TransitWorks team, therefore, undertook an extensive analysis of origins and destinations as part of this process. SANDAG’s projection of tripmaking for the year 2010 was used as the primary input, with the region organized into 67 “transit analysis tracts” to facilitate a more manageable analysis. Both work trips and nonwork trips were analyzed. Both overall (total) trip making, as well as trip “density” (the number of trips originating or terminating per acre of a target tract), were examined.

The results of this analysis of origins and destinations were sobering. The primary movements for work trips in the region are north/south, with long travel distances to the major employment sites. Downtown would be expected to count for only a little over one

TransitWorks included an extensive analysis of future trip patterns. By 2010, only one of 20 work trips will be to downtown. Twice as many trips will be made to the Golden Triangle/Sorrento Mesa areas.

The 2010 date was used as a “moving target” for analysis to avoid the biases inherent in the different land use assumptions for 2020. In other words, it was considered that an effective transit plan could provide the basis around which future land uses could be increasingly organized, but that these effects would probably not “kick-in” until around 2010, given the long lead time on much planning and development.
out of 20 work trips by the year 2010, with the core Central Coastal area attracting twice as many work trips. In contrast to this, existing transit services clearly underserve many of the key employment sites in the region. They do not provide direct connections – or, in many cases, even viable indirect connections – from the largest reservoirs of employees to these sites.

The origin/destination data was combined with the market data to create a set of possible transit network structure maps. These maps were used to prepare the network maps for the four future scenarios discussed below.

Service Concepts

In developing the strategic plan, emphasis was placed on defining the overall vision for transit over the next 20 years. Specific tactics, such as service routing details and the phasing of improvements, will be identified during the implementation phase. This distinction between vision and tactics also comes into play with regard to selection of transit technologies. TransitWorks avoided the sometimes unnecessary debates about the merits of any particular bus or rail technology, and focused instead on identifying the service characteristics (speed, frequency, and capacity) and elements of the customer experience that would be most significant in attracting riders. This “mode-neutral” approach allowed the focus to remain on the market research results that will guide MTD in developing the kinds of service attributes San Diegans deem most important in deciding whether to use public transit.

In developing the alternative strategies for each of the future scenarios, four service concepts were identified. Each service concept meets a different need in the regional transit system, as summarized below:

- **Green Car** – Aimed at community-level tripmaking that could include: (1) neighborhood circulators, (2) feeder access to Red/Yellow Car service, and/or (3) specialized fixed-route shuttles (e.g., for senior citizens unable to drive). Green Car would likely use smaller shuttle vehicles than traditional bus services use.

- **Blue Car** – Aimed at serving short-distance trip needs (0-5 miles) with frequent spacing of stops, this service provides basic mobility, albeit at low speeds of travel (10-15 mph). Most of the current bus system operates as “Blue Car” service.

- **Red Car** – Aimed at serving medium-distance tripmaking (1-9 miles), this service maintains higher average speeds (20-25 mph), operates with limited stops, and is often linked to Blue Car service for local distribution for riders from market segments which are least sensitive to their personal travel experience. The current trolley system and the County’s express bus routes mostly operate as Red Car service, though not all elements of either system fully match the requirements of this service. Depending on the funding scenario, Red Car services might be the focus of upgrade efforts, including improvements to certain facilities and service frequencies to better attract new riders. Under Scenario 2, and expanded in Scenarios 3 and 4, a core system of Red Car service begins to serve as the spine of the regional transit system.
Yellow Car – Aimed at serving longer-distance trips (6+ miles), this service maintains the highest average speeds (35-40 mph) in the transit system and operates with very limited stops. Yellow Car service is utilized in two ways:

1. Serving corridors where longer station spacing is justified based on land-use patterns that lead to longer-distance tripmaking (e.g., Interstate 15 [I-15] corridor). Yellow Car routes in these areas would compliment the Red Car services in other corridors that form the spine of the regional transit system in Scenarios 2-4.

2. Serving as an overlay in selected Red Car corridors where a faster, more limited-stop service is justified (in addition to Red Car service) for high-volume, long-distance trip needs. Under Scenarios 3 and 4, a system of these overlay services emerges to provide complete connectivity for longer-distance tripmaking throughout the region, focused especially on key employment sites and major trip attractors.

Each of the future scenarios discussed below embodies a different mix of the four service concepts, based on which kinds of services are needed to attract different market segments and the amount of funding available in each scenario.

Scenario Descriptions

The transit systems that could be deployed under each of the four alternative scenarios were defined in terms of network structure, system performance, and customer experience. In addition to these factors, a more qualitative discussion was offered on how the region would look and feel under each scenario, from the point of view of someone living in San Diego in 2020. Concept network maps were developed to illustrate the differences in overall regional connectivity of the system and major service corridors for the Red and Yellow Car services. These maps are attached.

Scenario 1 – Basic Mobility

The Region. The San Diego region in the year 2020 still offers an unparalleled climate and great scenic beauty. For many, however, the quality of life is not what was experienced in the previous century. Development in the region has continued to spread outward in low-density patterns, as new residents (most of whom are the sons and daughters of current residents) seek cheaper housing accommodations at the ever-expanding urban fringe. This has resulted in severe traffic congestion in most travel corridors, lasting for much of the day. Air quality has also been degraded due to reliance on autos that, although less polluting than in the past, are used more. More than one resident has proclaimed the near complete “Los Angelesification” of San Diego.

So-called “Intelligent Transportation Systems,” such as navigation devices in automobiles, guide some residents through the morass. Telecommuting allows others to avoid congestion by staying at home. However, these measures have now reached their practical limits. Congestion is common in many areas even at off-peak hours because of a continued dependence on automobiles for every trip. The design of new communities did not accommodate alternatives like walking, cycling, and transit because of a general feeling that the market would not support them. Besides, most existing codes prohibited the types of roadway and community design that would have encouraged more pedestrian-friendly communities, so congestion was the inevitable result. This has hurt the San Diego region economically, since other parts of the country long ago began offering more
inviting living environments and improved productivity for private businesses, and some of the better-paying companies had left San Diego for the greener pastures and more livable communities of these other regions.

The Transit System. Scenario 1 is a "worst-case" in which TransNet has not been reauthorized. Without an infusion of new financial resources, transit has been forced to do the best it can with less. Its primary task is to serve those without other transportation options. By constantly monitoring ridership patterns and public desires, resources have been shifted from those areas with low productivity to those where ridership is greater. This has not been an easy practice to maintain, however, as it provokes strong protest from those residents who are about to lose their service. In addition, constant requests for new services go unanswered due to lack of funding. Overall, transit ridership has remained about constant for the past 20 years, while the population of the region has increased by a third.

The focus on the core market – the Easy Goers – is dictated by practicality. There is only modest funding for operations and very little capital, along with poor land-use coordination and minimal use of transit priority measures. These factors do not allow MTDB to provide the level of service, with the right mix of attributes, which can attract meaningful shares of the other market segments. Services are concentrated in areas easily served by transit, meaning that many places (those with low residential or employment densities, or those areas whose road structure does not permit efficient transit operation) are poorly served or not served at all. The reallocation of resources, based on relative cost-effectiveness, has been absolutely necessary to counteract the impacts of higher fuel costs and increasing levels of congestion. Newer services like the Mission Valley East Light Rail Transit (LRT) line and the north I-15 corridor Bus Rapid Transit system have been difficult to sustain.

In terms of customer experience, the lack of funding has translated into minimal upgrades to the walking and waiting environments. The resulting lack of customer amenities further complicates the ability to attract new markets to public transit.

Scenario 2 – Mobility Plus

The Region. The San Diego region in the year 2020 does not look or feel materially very different than in Scenario 1, but there are more options for getting around. The reauthorization of TransNet has offered a modest increase in transit funding that has allowed several new projects to go forward. Public transportation's share of TransNet is still only 1/6 of a cent for a 20-year period, but equal amounts of the transit portion are now allocated to both operating and capital needs. This has provided a much-needed infusion of funds to permit some expansion of bus lines and the intensification of service on many existing routes. New capital facilities include the refurbishment of the existing trolley system and some additional Red Car facilities. A bus rapid transit system successfully operates in the I-15 corridor, and a few on-street rapid bus systems have been targeted in areas where they are most likely to meet success. However, the 20-year period of TransNet’s reauthorization is about to come to an end, and the region is again faced with decisions on how to finance its transportation system.

The increase in transit resources to date has allowed more people to avoid the problems of congestion described in Scenario 1. However, many market segments are still not attracted to transit because too little of the system provides the kinds of attributes that it demands. There are still many places where transit vehicles are caught up in congestion on city streets and freeways. Their resulting low speeds are not competitive with the auto, despite the latter's overall decline in performance. What's more, the limited structure of the Red Car network and the lack of an effective network of Yellow Car express services make transit less attractive for longer commutes, even for transit's core markets. Moreover, air pollution generated by our auto-based transportation system is a problem that still affects everyone who lives here, in spite of how they travel. There have been
some successes in reshaping land uses into more compact patterns around transit facilities, but only in selected locations. Most of the region has continued to grow as low-density sprawl, although the worst examples of that seem to have been contained because of more enlightened public opinion. Nevertheless, the San Diego region is only just holding its own in the global marketplace. While no worse than many American cities, it is also seen as less innovative than others.

The Transit System. MTDB’s primary focus remains that of providing a web of basic mobility services to meet the needs of a mostly transit-dependent ridership. Service expansions are concentrated in residential areas that have, or have committed to, high transit/land-use coordination (e.g., Mid-City, San Ysidro). Areas with low land-use coordination do not receive improved service or may not be served at all. Some reallocation of existing services is still warranted, albeit at a more modest level than in Scenario 1.

The increase in funding has created opportunities for providing upgraded services in key locations to attract some riders beyond the core market of Easy Goers. The focus is on enhancing Red Car and Blue Car service from areas with high concentrations of this market segment to major employment areas (e.g., Sorrento Mesa, Kearny Mesa) that were not formerly well served by transit. Because of limited funding, an emphasis is placed on cost-effective, higher-speed, rubber-tired Red Car services that do not require high capital investment. Some use of Green Car services is found in areas with a large number of internal trips (i.e., in denser, mixed-use communities). Overall, however, systemwide service frequencies have not improved significantly over current levels. Red Car services have been improved to a base 10-minute frequency, and some Blue Car services have been improved to a 10- to 15-minute service in peak periods, but much of the rest of the system continues at a 30-minute standard.

In terms of the customer experience, moderate successes with land-use coordination have improved the walking environment to transit in many locations, thus reducing “perceived” walk times and attracting more riders. More attention has been paid to creating direct and pleasant walking paths to transit stops, including use of traffic-calming measures. However, many areas still have auto-dominated land use designs that inhibit access to transit. Some improvements to the wait environment at key stations are possible, but the majority of stops continue to have minimal amenities. A number of major stops or stations now feature live information on vehicle arrivals, giving transit riders a greater degree of control over their experience, and ridership has risen as a result of this effort, too.

Scenario 3 — Region’s Second Car

The Region. In Scenario 3, the San Diego region is noticeably different from what it looked and felt like at the end of the Twentieth Century. It is also different from what it would have become without its decision to change its transportation policies 20 years ago. Of course, few notice these changes except for the aging planners and government officials that helped influence them years ago.

Transit is now a commonplace travel option for people throughout the region. It is no longer looked upon by some as a “lower class” form of transportation because a wider variety of services is offered with a wider range of amenities and a set of service attributes that more closely matches with people’s travel needs. This is due in no small part to how local financial support for transit was expanded once the TransNet ran out. The new sales tax significantly increased the revenues going to public transportation and its effective period was extended. As a result, more money was available for transit, allowing many more kinds of new services to be introduced. Existing services have also been refurbished with the kinds of amenities appealing to more market segments.

San Diego seems different than it used to, in mostly positive ways. It has taken many older residents some time to adjust to the fact that there are more people here, but new
residential areas have been built in ways that have saved much of the open space. These new housing areas are also more compact and "homey," where it is comfortable to walk. There are more things to walk to, since small shops and work places are located nearby. Most people own an automobile, and some households still find it necessary to have multiple cars. However, people no longer have to use these cars for every trip they make, and many households have found that they do not need to purchase that second, third, or fourth car. More things are now within walking distance, and using a bike, taxi, or public transit are so much more convenient than they used to be that there just does not seem to be the need to drive all the time. Less obvious, but just as important, is the fact that the San Diego region has increased its global competitiveness by offering a wider variety of local travel and housing options than those places that remained trapped by their Twentieth Century outlooks. Employers have not left the region as they have in other cities that did not change their land use and transportation patterns. Not only are their employees happier in the local environment that has been created, but also there is less work time lost to traffic congestion.

The Transit System. The focus of Scenario 3 represents a significant departure from previous scenarios. A major infusion of regional funding for both capital and operating improvements has allowed MTD to focus on providing a "second car" option for many residents. The target market has shifted from Easy Goers to Cautious Runabouts. This shift has not diminished the former group. If anything, improved services have resulted in significant gains, especially among Easy Goers. Moreover, the adoption of this new "bellwether" segment has set a standard that has allowed transit to become a realistic choice for the majority of the region's residents (including Conventional Cruisers, Flexible Flyers, and Intrepid Trekkers). In order to attract these new market segments, greater emphasis has been placed on deploying services with the attributes that address these markets' high sensitivity to their personal travel experience and their need for flexibility and speed.

A system of Red and Yellow Car core routes focuses on maintaining a high level of regional interconnectivity during commute periods, at minimum 10-minute intervals. Trolley lines have been refurbished and extended, and many other areas get the benefits of "trolley-like" service, with vehicles that look like light rail but which utilize rubber-tired technology. These "flex trolleys" and regular trolleys work together as a single Red Car system, while similar "flex trolleys" operating as rapid Yellow Car services whisk commuters across many stretches of the region on trips that were not practical by public transportation before. Fares are higher on these services, but frequency and reliability are high, as well. These fast services are given priority in congested areas, and the vehicles and stops offer not just a high degree of comfort and security, but their design and configuration has proven popular with the targeted market segments. Rapid transit serves major work locations like downtown San Diego, Kearny Mesa, Sorrento Mesa, Otay Mesa, and the Golden Triangle from most parts of the region. A rich mixture of Green Car services supplements them, tying even more people into the regional network. An improved network of Blue Car services offers a high level of basic coverage throughout the day for serving not just the needs of transit dependents but those who find the convenience of such routes useful. New services have focused on key employment sites, particularly where congestion impedes the ability of employees to get to work. On the residential end, the new services focus on directly serving areas that have developed with a more pedestrian-friendly design, as well as much of the previously existing denser neighborhoods in the region. These neighborhoods have enhanced transit's potential, since a high percentage of residents are within walking distance of transit services. Other areas with lower land-use coordination are served, but with lower levels of service.

The customer experience on transit has been greatly enhanced compared to the old days.
Most Red Car and Yellow Car services are "rail-like" in their feel and look, irrespective of the transit technology chosen for a particular route. Transit stops have been enhanced both to provide improved passenger amenities such as real-time information, shelters, landscaping, and lighting and to create more focus on transit in the community. Significant improvements have been made to the walking environment to transit, particularly in the large number of areas with strong land use coordination. Even in areas with auto-dominated land uses, more direct and pleasant walking paths to transit stops have maximized access to transit and reduced the perceived "walking time."

Scenario 4 – Transit First

The Region. The San Diego region in the year 2020 certainly is not perfect. Those who have lived there most of their lives still have fond memories of when there were a million fewer residents and prices were so much cheaper. But they are not unhappy with the way things have turned out, either. San Diego has moved to the forefront of desirable world cities. Not only is there still a superb climate, but also there is the air quality and urban form to match it. The region has shown the rest of the world how to mold its future in ways that reflect the highest aspirations of its citizens. All this was accomplished through some hard decisions made 20 years ago by residents on where they wanted to go and how they needed to get there. There was not agreement on all the details, but they did come to a consensus. Most importantly, they followed up on that consensus with their own tax dollars. The results paid off.

The San Diego region finally curbed its appetite for consuming land by more careful attention to the design of new residential, employment, and shopping areas. Open spaces have been successfully preserved and managed and many formerly endangered species rescued. Residents have come to realize that they actually like compact urban development because of the sense of community it gives, as well as the variety of travel and housing options it affords. It is so much easier to walk or use a bicycle, and most parts of the region offer a variety of nearby transit services. Traffic congestion still exists in certain travel corridors, particularly for those people whose daily activities require an automobile. However, newspaper columnists have pointed out how much worse it was projected to be in reports produced back at the turn of the century. Plenty of options exist to avoid traffic congestion now, if residents chose to use them...and most of them do.

The Transit System. Scenario 4 has focused on adding an all-day component to the commute trip orientation of Scenario 3. This all-day transit orientation has allowed further in-roads to be made into capturing market segments not traditionally attracted to public transit, serving a higher percentage of the bellwether Cautious Roundabouts market and other more sensitive market segments. Transit has gone beyond simply being a realistic choice for more people to become the first choice for many trips.

The extensive network of Yellow Car and Red Car services has been expanded to provide a high level of service and regional connectivity throughout the day. Green Car service extends the range of all services, and Blue Car service operates in those corridors and areas where ridership does not justify the development of other services, thus preserving the basic mobility network. A minimum 10-minute service frequency standard prevails for all service types throughout the day, creating a high level of convenience for passengers. Late evening and owl service, while less frequent, makes travel by transit possible throughout the region around the clock.

Emphasis has been placed on rapid expansion of service to all major demand markets with lower-capital improvements in the short term. In the longer term, higher capital
investment upgrades maximize system speed through extensive use of transit priority measures and dedicated infrastructure. Short overpasses and tunnels allow transit vehicles and even surface traffic to avoid the congestion that is common in certain areas. The high degree of land-use coordination affords the opportunity to integrate transit into community design, giving transit a front-door entrance into major developments similar to that achieved at the America Plaza Transfer Station. The aim is a superior customer experience in which significant attention is paid to service attributes in all areas served by transit. The design of the sidewalk environment is oriented to creating a pleasant and safe walk to transit. All stops have hardscape and landscape design elements that make transit a focal point of activity within the community. Shelter design, lighting, and real-time information create a high level of comfort for our customers. Upscale vehicle design has created a first-class look and feel, especially for Red and Yellow Car services.
In developing a strategic plan, emphasis was placed on defining the overall vision for transit over the next 20 years. At this concept stage, order-of-magnitude cost estimates were provided towards understanding the relative differences in regional commitment to public transportation that will be needed to support each scenario. As a point of reference, the most recent Regional Transportation Plan estimates that capital costs for transit will total $4.7 billion for both MTDB and NCTD areas for the 2000-2020 period. Total capital expenditures for all transportation projects in the region are expected to total $29.98 billion over the same period.

The capital and operating cost figures listed below represent the total estimated funding needed to support the capital projects and service levels discussed above. The capital side, federal and state funding are assumed to continue, and would help reduce the amount of local funds that would be needed.

Scenario 1 – Basic Mobility: The primary focus over the 20-year period would be:

- Completion of the Mission Valley East (MVE) trolley line and north I-15 corridor Bus Rapid Transit system;
- Modest capital improvements to selected transit centers;
- Maintenance and capital replacement needs of existing system Blue and Red Car services;
- Minimal service improvements beyond those for MVE and north I-15 corridor Bus Rapid Transit system; and
- Reallocation of resources from those areas with low productivity to those where ridership is greater.

Over a 20-year period, the $1.5 billion in capital spending would mainly involve completion of the MVE Line, and possibly the Mid-Coast extension to Balboa Avenue, along with some modest additions in numbers of transit centers and bus/trolley replacement. Transportation Development Act (TDA) funds, which make up the bulk of funding for operations today, are assumed to continue to grow at a modest rate. However, inflation and higher operating costs (due to such factors as “living wage” rates and more expensive alternative fuel vehicles) are presumed to offset much of this increase. Annual subsidies for operations (in current dollars) would continue to be in the range of $70 million in the MTDB area. In the absence of specific ridership estimates, these figures, along with operating subsidy figures listed below for the other scenarios, assume a continuation of current farebox recovery ratios.

Scenario 2 – Mobility Plus: The focus of capital and operations funding would be on:

- Cost-effective, higher-speed, rubber-tired Red Car services that do not require high capital investment, serving those major employment areas (e.g., Golden Triangle, Sorrento Mesa, Kearny Mesa) not currently well served. Because of operating funding limitations, however, many routes would be limited to peak-period-only services;
- Upgrading service levels on selected Red Car trolley lines to 10-minute peak frequencies;
- Upgrading selected Blue Car services in areas with high concentrations of transit dependents; service in many areas would remain at a 30-minute standard;
- Limited use of Green Car services in denser, mixed-use communities and key employment areas;
- Capital projects to key employment areas to provide priority treatment in congested areas; and
- Limited short rail line extensions where ridership and capacity needs justify the investment.

Over the 20-year period, spending for capital projects would increase by $640-$830 million over Scenario 1, for a total of $2.1-2.3 billion. On the operating side, an additional $20-$24 million in annual spending (in 2000 dollars) by the year 2020 is assumed to be available (for a total of $92-$96 million annually).

Scenario 3 – Region’s Second Car: Focus of capital and service improvements on:

- Creation of a rich network of all-day Red Car services throughout the region with significant use of transit priority measures;
- Introduction of a network of Yellow Car routes, primarily as peak-period-only services, that provides high-speed connectivity for longer-distance trips throughout the region;
- Expanded use of Green Car services, as well as enhanced Blue Car service coverage;
- Base service frequency of 10 minutes on all Yellow and Red Car services, and on many Green and Blue Car lines; and
- Enhancement of the customer experience through increased service amenities (vehicle design, stations, walking environment).

Over the 20-year period, total capital project spending would increase in the range of $3.3-$4.2 billion over Scenario 1, for a total of $4.8-5.7 billion. By the year 2020, annual spending on transit operations would have risen by $84-$101 million in subsidies (2000 dollars) to $154-171 million annually.

Scenario 4 – Transit First: The focus of capital and service improvements would be on:

- Expanding Yellow Car and Red Car lines to all-day services, and extensive use of Green Car services to expand their range;
- Expansion of Blue Car service to areas where ridership does not justify the development of Red and Yellow Car services;
- Creation of a 10-minute service frequency standard for all service types throughout the day;
- Introduction of owl service on many lines that, while less frequent, makes travel by transit possible throughout the region around the clock;
- Extensive capital investment in transit priority measures to maximize system speed; and
- Extensive capital investment in upgrading of all transit stops and stations.

Over the 20-year period, total capital funding would rise by a total of $4.0-$5.3 billion (2000 dollars) over Scenario 1, for a total of $5.5-6.8 billion. For operating subsidy needs, annual spending by the year 2020 would be in the range of $212-$237 million, $142-$167 million over Scenario 1.
Estimating the ridership potential for each of the scenarios is dependent on four key factors: (1) the mix of transit service levels and service types, (2) the use of transit priority measures to improve operating speeds, (3) land use coordination to increase accessibility to transit, and (4) what we have come to refer to as “the customer experience” (including issues of vehicle design, station waiting environment, and walking environment).

SANDAG performs ridership modeling through use of its Tranplan model. Our conceptual networks allow us to make assumptions regarding the mix of service levels/service types and where transit priority measures are needed. However, the estimation of the latter two factors will require additional time and coordination with SANDAG and local jurisdictions. The determination as to where potential increases in land use densities will occur will be the subject of a series of workshops that SANDAG will hold with local jurisdictions as part of the Region2020 Growth Management Strategy. This process has just begun and is expected to continue through mid-2001. It will be even more difficult to assess how customer experience amenities translate into ridership potential. While our market research has come up with mathematical coefficients to assess this potential, it will be a costly and time-consuming process to incorporate them into SANDAG’s Tranplan model. MTDB will be working with SANDAG over the coming months to assess how best to address this issue.

Therefore, it is premature to use the Tranplan model for estimating ridership, pending resolution of the issues raised above. But since ridership potential will be an important factor in the Board’s decision on selecting a preferred scenario, we have developed a surrogate measure that gauges accessibility to transit. The table on the following page measures residential and employment accessibility to the Red and Yellow Car networks for each of the scenarios. Inclusion of Blue and Green Car service would, of course, increase overall access to transit. It is also important to recognize that the data for residents is for 1999 and for employment, 1995; to the extent that land use policies support a transit strategy (as assumed in the higher-order scenarios), the share of residents and jobs that will be located around transit stations will grow, perhaps significantly. The table, then, only represents what the networks would do for the region if they were in place today; their future impact could be much greater than today’s numbers indicate.
<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3 and Scenario 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population/Employment</td>
<td>60,000</td>
<td>182,000</td>
</tr>
<tr>
<td>% of Total</td>
<td>3%</td>
<td>9%</td>
</tr>
<tr>
<td>Residents within 1/4 mile access</td>
<td>214,000</td>
<td>540,000</td>
</tr>
<tr>
<td>% of Total</td>
<td>11%</td>
<td>27%</td>
</tr>
<tr>
<td>Residents within 1/2 mile access</td>
<td>574,000</td>
<td>1,053,000</td>
</tr>
<tr>
<td>% of Total</td>
<td>29%</td>
<td>52%</td>
</tr>
<tr>
<td>Residents within 1 mile access</td>
<td>136,000</td>
<td>264,000</td>
</tr>
<tr>
<td>% of Total</td>
<td>15%</td>
<td>30%</td>
</tr>
<tr>
<td>Employment within 1/4 mile access</td>
<td>237,000</td>
<td>457,000</td>
</tr>
<tr>
<td>% of Total</td>
<td>27%</td>
<td>52%</td>
</tr>
<tr>
<td>Employment within 1/2 mile access</td>
<td>389,000</td>
<td>657,000</td>
</tr>
<tr>
<td>% of Total</td>
<td>44%</td>
<td>74%</td>
</tr>
</tbody>
</table>

Statistics: *MTDB Area Population = 2,008,507 MTDB Area Employment = 882,735*

The station sites under Scenarios 3 and 4 are identical, with only the service levels being different due to the fact that many routes under Scenario 3 operate only during the peak period. As can be seen, accessibility to Red (and Yellow) Car stations increases significantly even under Scenario 2 when compared with Scenario 1. There is a three-fold gain in residents within one-quarter mile access of a Red Car station. The number of employees within a one-quarter-mile walk access of a Red Car station would double under Scenario 2. Under Scenarios 3 and 4, even more dramatic gains in accessibility to Red and Yellow Car stations would be realized. More than five times the number of residents would be within walking distance of a station, and over 80 percent would be within a short one-mile drive of a station. On the employment side, over 40 percent of employees would be within a quarter-mile walk of a Red or Yellow Car line under Scenarios 3 and 4.

While not an actual measure of ridership, these accessibility-to-transit figures do offer an indication of how well the networks perform in terms of being within convenient access to key residential and employment centers throughout the region.
Public Involvement Process

MTDB conducted a number of outreach efforts that were designed not only to increase awareness and provide opportunities for input into the TransitWorks process, but also to develop a constituency among key regional stakeholders on what the future role of transit should be. Outreach efforts included:

- Participating in a series of workshops coordinated with the City of San Diego's Strategic Framework public forums that provided those in attendance not only information on each process but also how transit and land use coordination needs to work together.

- Holding a series of informal workshops with planning directors and public works directors for MTDB-area jurisdictions designed to open discussions on future coordination efforts on land use coordination and implementation of transit priority measures.

- Providing presentations on the TransitWorks process to numerous community, environmental, and business groups, with the goal of developing a wide base of support for increasing the future role of transit.

- Running a four-page color insert in the main local newspaper, The San Diego Union-Tribune, on the TransitWorks process and outlining the four future scenarios being evaluated. This insert proved successful in increasing the awareness of TransitWorks to the general public beyond those people who attended the forums and workshops. People were invited to send in comments by letter or e-mail, or by stopping by information booths set up at various regional shopping malls.

- Creation of a public information website, www.sdcommute.com/sdmts/transitworks, which provided detailed program information, interactive surveys and opportunities for e-mail input.

- Finally, a stakeholders' group of key business, community, and environmental groups was brought together for four forums over the course of the TransitWorks process. The aim was to use these stakeholders as a sounding board as the TransitWorks process unfolded. By soliciting their input at key stages in the process, the hope was that they would take some ownership in helping to mold the final vision statement.

The overall tenor of the input received proved to be very positive. There was widespread support of the market-based approach, most notably from business leaders. The result was support for significantly increasing the role of transit in the region, with the "Region's Second Car" and "Transit First" scenarios generating the most interest. There was an acknowledgement that these scenarios will require a greater regional commitment to transit, but most of the input indicated that this should not prevent MTDB from deciding to pursue a bolder strategy.
Adopted Statement of Strategy

In developing a strategic plan, many members of the public and elected officials alike suggested that MTDB develop a plan based on "thinking outside the box" and "creating a new paradigm for transit." Certainly, the development of the present light rail system represented such forward thinking for planners back in the late 1970s. There has been considerable change in the San Diego region since the opening of the first trolley line nearly 20 years ago. With the increased congestion on our freeways and arterial streets and the need to accommodate one million new residents by 2020, transit can have a greater role facilitating travel in the region.

Scenario 4 – The Transit First approach best represents creation of a new vision for public transportation. The investment needed to make Scenario 4 a reality is certainly a major undertaking relative to current spending on transit in the San Diego region. Yet the dollar amounts for the development of the full system of capital infrastructure recommended in Scenario 4 are reasonable when compared to capital investments on specific projects in other U.S. cities:

<table>
<thead>
<tr>
<th>Scenario 4 - Transit First</th>
<th>$5.5 – 6.8 billion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles Alameda Freight Corridor</td>
<td>$2.4 billion</td>
</tr>
<tr>
<td>Los Angeles Red Line Subway</td>
<td>$4.5 billion</td>
</tr>
<tr>
<td>Boston “Big Dig” Project</td>
<td>$13.5 billion</td>
</tr>
</tbody>
</table>

The Scenario 4 vision is predicated on establishing local policies that will focus on pedestrian-friendly community design principles. It sets the stage for how MTDB suggests the region could look and feel in the year 2020 and beyond, consistent with the vision statements in SANDAG’s Region2020 planning process and the City of San Diego’s Strategic Framework effort.

At its October 26, 2000, meeting, the MTD Board of Directors adopted a policy position to pursue Scenario 4 – Transit First as its Statement of Strategy on the role transit will play in the MTDB area over the next 20 years and beyond. A unique window of opportunity exists for making a paradigm shift in our regional land use and transportation planning, and the adoption of a Transit First policy sends a signal of transit's support for making this change happen.