Coastal Frontiers Corporation
9420 Topanga Canyon Blvd, Suite 101
Chatsworth, CA 91311-5759
(818) 341-8133 Fax (818) 341-4498

2004 REGIONAL BEACH MONITORING PROGRAM
ANNUAL REPORT

Oceanside Receiver Site, April 2001 and October 2004
Mission Beach Receiver Site, April 2001 and October 2004

Apr. 2001 (Pre-Nourishment)
Oct. 2004 (37 Months after Nourishment)
Oct. 2004 (41 Months after Nourishment)
SANDAG
2004 REGIONAL BEACH MONITORING PROGRAM

ANNUAL REPORT

Prepared for:
SANDAG

Prepared by:
Coastal Frontiers Corporation

9420 Topanga Canyon Blvd.
Suite 101
Chatsworth, CA 91311

April 2005
EXECUTIVE SUMMARY

This report presents the findings of the SANDAG 2004 Regional Beach Monitoring Program. As in past years, the general objective of the program was to document changes in the condition of the shorezone, thereby providing a basis for evaluating the impacts of natural events and human intervention. The specific focus was to monitor the fate of nourishment material introduced at twelve receiver beaches under SANDAG’s Regional Beach Sand Project (RBSP). The RBSP provided a total of 2.1 million cubic yards (cy) of sand to the receiver beaches between April 6 and September 23, 2001.

The 2004 Monitoring Program consisted of a beach component and a lagoon entrance component. The beach component included semi-annual profiling on 61 shore-perpendicular transects, semi-annual oblique aerial photography at the twelve RBSP receiver sites, and monthly beach width measurements at three of the RBSP receiver sites. The lagoon entrance component addressed five sites in the Oceanside Littoral Cell: the jetty-stabilized entrances at Agua Hedionda and Batiquitos, and the unstabilized entrances at San Elijo, San Dieguito, and Los Peñasquitos. Topographic data and oblique aerial photographs were obtained at each entrance on a semi-annual basis, along with monthly observations and ground photographs at the three unstabilized entrances.

To provide continuity with SANDAG’s previous monitoring work, November 2003 through October 2004 was defined as the 2004 Monitoring Year, the prior three one-year periods as the 2003, 2002 and 2001 Monitoring Years, and the four-year period from November 2000 through October 2004 as the RBSP Monitoring Period. In the case of the five lagoon entrances, post-RBSP conditions were evaluated during the three-year period encompassing the 2002, 2003 and 2004 Monitoring Years to reflect the conclusion that the fills did not impact the lagoons prior to this period.

Principal study findings are as follows:

1. Although the precipitation was slightly above average during the 2004 Monitoring Year, the majority of the rainfall was attributable to a single storm event that occurred in late October. Streamflow, wave energy, and storm frequency were below-average. The average values of these parameters during the four-year RBSP Monitoring Period remained well below the pre-RBSP averages. The primary implications of these
environmental conditions are threefold: (1) the absence of large wave events following the implementation of the RBSP helped to prolong the life of the beach fills; (2) the scant precipitation and low streamflows failed to deliver significant quantities of beach-quality sediment to the coast; and (3) the low streamflows failed to flush coastal sediment from the lagoon entrances in the Oceanside Cell.

2. The only non-RBSP nourishment provided during the RBSP Monitoring Period was 2,000 cy (500 cy/yr) at Moonlight Beach. As a result, 90% of the RBSP fill material (1,868,000 cy) may be regarded as compensating for the average annual nourishment of 467,000 cy/yr provided from other sources in the years preceding the RBSP. The remaining RBSP material, 236,000 cy, represents incremental nourishment. Most of this nourishment was concentrated in the Oceanside Cell, which received an additional 264,000 cy (equivalent to 66,000 cy/yr over the four-year RBSP Monitoring Period). The Mission Beach Cell received an additional 144,000 cy (36,000 cy/yr), while the Silver Strand Cell incurred a deficit of 172,000 cy (43,000 cy/yr) due to the lack of nourishment other than the RBSP. Of particular note is the total absence of nourishment activities in all three littoral cells during the 2003 and 2004 Monitoring Years.

3. The sand bypass rates at Oceanside Harbor, Agua Hedionda and San Elijo during the RBSP Monitoring Period (285,000, 192,000 and 26,000 cy/yr) exceeded the average annual rates in prior years by 33,000, 49,000, and 12,000 cy/yr, respectively. The increased bypassing rates constituted a direct benefit to the receiving beaches, which were located south of Oceanside Harbor, north and south of Agua Hedionda, and south of San Elijo Lagoon. At Batiquitos, where lagoon restoration was undertaken during the pre-RBSP monitoring years, comparison of the historical and RBSP Monitoring Period bypass rates is not meaningful.

4. During the 2004 Monitoring Year, the volume of sediment in the San Diego County shorezone did not change appreciably, with gains and losses nearly balanced. In contrast, shoreline retreat predominated during the one-year period. This apparent paradox may be explained by the fact that sediment moved from the subaerial portion of the profile to the submerged portion, but remained within the shorezone. The predominance of shoreline retreat is attributable to three factors: (1) offshore dispersal of the RBSP fill material, (2) a lack of significant sediment input from rivers and streams, and (3) a lack of beach nourishment activities. The stability of the shorezone sediment volume is consistent with the fact that, in the absence of nourishment activities, major rainstorms, and severe storm events, significant quantities of material were neither added to nor removed from the coast.
5. Notwithstanding the shoreline retreat that occurred in 2003 and 2004, the beaches in the Oceanside and Mission Beach Littoral Cells were in substantially better condition at the end of the four-year RBSP Monitoring Period than at the beginning. Beach width and sediment volume both tended to increase over this period, with the greatest average shoreline advance (9 ft) occurring in the Mission Beach Cell and the greatest average shorezone volume gain (21 cy/ft) occurring in the Oceanside Cell. The primary reasons for this general improvement in the state of the coast appear to have been the RBSP beach fills, and the relatively mild wave conditions that prevailed throughout the period. In the Silver Strand Cell, beach width changes were mixed during the RBSP Monitoring Period but sediment volumes decreased. The volume losses in this cell correlate with the absence of non-RBSP nourishment activities during the period, which produced a net deficit relative to the historical average nourishment rate.

6. The performance of the individual RBSP fills varied considerably. At some sites, such as Del Mar, Moonlight, and South Carlsbad, the gains in shorezone volume that occurred at the time of fill placement were short-lived. At others, such as Mission Beach and Oceanside, the gains persisted through the time of the Fall 2004 Survey. In many cases, dispersal of the fill material was accompanied by shorezone volume gains on the downdrift beaches. The positive impact of the RBSP was most evident in the Oceanside-North Carlsbad area, where the monitoring data suggest that the Oceanside and North Carlsbad fills coalesced and dispersed laterally to benefit more than two miles of shoreline. A similar situation was observed in the Encinitas area involving the Batiquitos and Leucadia fills.

7. In a departure from prior annual reports, the lagoon analysis covers the three-year period between Fall 2001 and Fall 2004 rather than the entire RBSP Monitoring Period. This change was instituted to reflect the conclusion that the RBSP fills exerted no material impact on the lagoon entrances prior to Fall 2001. The two jetty-stabilized lagoon entrances, Agua Hedionda and Batiquitos, remained open to the full range of tidal exchange with only minor variations in water depth following the RBSP (Fall 2001 to Fall 2004). Of the three unstabilized entrances, San Elijo closed on four occasions, San Dieguito on five, and Los Peñasquitos on seven. This pronounced variation in closure frequency resulted in the San Elijo entrance channel remaining open to tidal exchange for a greater percentage of time than the pre-RBSP average (91% vs. 43% historically), the San Dieguito channel remaining open for a lesser percentage of time (51% vs. 77% historically), and the Los Peñasquitos channel remaining open for a comparable percentage of the time (86% vs. 93% historically).
8. At San Elijo, the dredge rate following the RBSP (27,000 cy/yr) exceeded the historical average (15,000 cy/yr) by 80%. However, the higher rate is attributable, at least in part, to an increased level of maintenance made possible by additional funding. The post-RBSP dredge rate at Agua Hedionda (169,000 cy/yr) was within 10% of the pre-RBSP rate (182,000 cy/yr). At Batiquitos, where lagoon restoration was undertaken during the pre-RBSP monitoring years, comparison of the two dredge rates is not meaningful.
TABLE OF CONTENTS

EXECUTIVE SUMMARY..i
TABLE OF CONTENTS...iv
LIST OF TABLES .. viii
LIST OF FIGURES ...ix
LIST OF PLATES .. xii
1. INTRODUCTION ...1
2. BACKGROUND INFORMATION ..5
 2.1. Environmental Conditions ...5
 2.1.1. Precipitation ..5
 2.1.2. Streamflow ..7
 2.1.3. Wave Climate..10
 2.2. Sediment Management Activities ..13
 2.2.1. Regional Beach Sand Project ..13
 2.2.2. Other Nourishment Projects ...14
 2.2.3. Sand Bypassing ...17
 2.3. The RBSP Monitoring Period in Perspective ...21
3. MONITORING METHODS..24
 3.1. Beach Monitoring ..24
 3.1.1. Semi-Annual Beach Profile Surveys...24
 3.1.2. Semi-Annual Aerial Photography ...30
 3.1.3. Monthly Beach Width Measurements ..30
 3.2 Lagoon Entrance Monitoring ..31
 3.2.1. Semi-Annual Topographic Surveys ...31
 3.2.2. Semi-Annual Oblique Aerial Photography ..32
 3.2.3. Monthly Inspections and Photography ..32
4. MONITORING DATA..33
 4.1. Beach Data ...33
 4.1.1. Beach Profile Data ..33
 4.1.2. Aerial Photographs ..41
 4.1.3. Beach Width Measurements ..42

(continued)
TABLE OF CONTENTS

(continued)

4.2. Lagoon Entrance Data .. 42
 4.2.1. Topographic Data .. 42
 4.2.2. Aerial Photographs .. 43
 4.2.3. Inspection Results ... 43

5. BEACH CONDITION ... 44
 5.1. Regional Overview ... 44
 5.1.1. Shoreline and Subaerial Volume Changes ... 45
 5.1.2. Beach Widths ... 55
 5.1.3. Shorezone Volume Changes ... 55
 5.2. RBSP Beach Fill Performance ... 68
 5.2.1. Imperial Beach .. 75
 5.2.2. Mission Beach .. 78
 5.2.3. Torrey Pines .. 81
 5.2.4. Del Mar .. 83
 5.2.5. Fletcher Cove .. 86
 5.2.6. Cardiff .. 88
 5.2.7. Moonlight Beach ... 91
 5.2.8. Leucadia .. 94
 5.2.9. Batiquitos ... 96
 5.2.10. South Carlsbad .. 99
 5.2.11. North Carlsbad .. 101
 5.2.12. Oceanside ... 104

6. LAGOON ENTRANCE CONDITION .. 107
 6.1. Overview .. 107
 6.2. Lagoon Entrance Performance .. 110
 6.2.1. Agua Hedionda ... 111
 6.2.2. Batiquitos .. 114
 6.2.3. San Elijo .. 115
 6.2.4. San Dieguito ... 117
 6.2.5. Los Peñasquitos .. 122

7. CONCLUSIONS .. 125

8. REFERENCES ... 128

(continued)
TABLE OF CONTENTS

(continued)

APPENDICES (Separate Volume)

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SUMMARY OF HISTORICAL BEACH PROFILE DATA, U.S.-MEXICAN BORDER TO SANTA MARGARITA RIVER</td>
</tr>
<tr>
<td>B</td>
<td>SUMMARY OF RECENT BEACH PROFILE DATA, U.S.-MEXICAN BORDER TO SANTA MARGARITA RIVER</td>
</tr>
<tr>
<td>C</td>
<td>BEACH PROFILE DATA FOR NEARSHORE PORTION OF EACH TRANSECT</td>
</tr>
<tr>
<td>D</td>
<td>BEACH PROFILE DATA FOR ENTIRE LENGTH OF EACH TRANSECT</td>
</tr>
<tr>
<td>E</td>
<td>MSL SHORELINE AND BEACH WIDTH DATA DERIVED FROM BEACH PROFILE DATA</td>
</tr>
<tr>
<td>F</td>
<td>BEACH VOLUME DATA DERIVED FROM BEACH PROFILE DATA</td>
</tr>
<tr>
<td>G</td>
<td>MONTHLY BEACH WIDTH MEASUREMENTS</td>
</tr>
<tr>
<td>H</td>
<td>TOPOGRAPHIC DATA FOR LAGOON ENTRANCES</td>
</tr>
<tr>
<td>I</td>
<td>MONTHLY GROUND PHOTOGRAPHS OF LAGOON ENTRANCES</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 1.</th>
<th>RBSP Beach Fills</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.</td>
<td>Beach Nourishment in the Silver Strand Littoral Cell Preceding the RBSP, November 1993 through October 2000</td>
<td>16</td>
</tr>
<tr>
<td>Table 3.</td>
<td>Beach Nourishment in the Oceanside Littoral Cell Preceding the RBSP, November 1993 through October 2000</td>
<td>17</td>
</tr>
<tr>
<td>Table 4.</td>
<td>Non-RBSP Beach Nourishment in the Oceanside Littoral Cell, November 2000 through October 2004</td>
<td>18</td>
</tr>
<tr>
<td>Table 5.</td>
<td>Sand Bypassing in the Oceanside Littoral Cell Preceding the RBSP, November 1993 through October 2000</td>
<td>19</td>
</tr>
<tr>
<td>Table 6.</td>
<td>Sand Bypassing in the Oceanside Littoral Cell, November 2000 through October 2004</td>
<td>20</td>
</tr>
<tr>
<td>Table 7.</td>
<td>Environmental Conditions: RBSP Monitoring Period vs. Historical Average</td>
<td>22</td>
</tr>
<tr>
<td>Table 8.</td>
<td>Beach Nourishment Rates: RBSP Monitoring Period vs. Historical Average</td>
<td>22</td>
</tr>
<tr>
<td>Table 9.</td>
<td>Sand Bypassing: RBSP Monitoring Period vs. Historical Average</td>
<td>23</td>
</tr>
<tr>
<td>Table 10.</td>
<td>Beach Profile Transect Locations</td>
<td>25</td>
</tr>
<tr>
<td>Table 11.</td>
<td>Number of Transects Included in Each SANDAG Survey</td>
<td>34</td>
</tr>
<tr>
<td>Table 12.</td>
<td>Range and Depth of Closure at Each Profile Location</td>
<td>39</td>
</tr>
<tr>
<td>Table 13.</td>
<td>MSL Shoreline Changes during the 2004 Monitoring Year and RBSP Monitoring Period</td>
<td>47</td>
</tr>
<tr>
<td>Table 14.</td>
<td>Shorezone Volume Changes during the 2004 Monitoring Year and RBSP Monitoring Period</td>
<td>60</td>
</tr>
<tr>
<td>Table 15.</td>
<td>RBSP Beach Fill Performance</td>
<td>75</td>
</tr>
<tr>
<td>Table 16.</td>
<td>Lagoon Dredging Attributable to Sedimentation Occurring between November 1993 and October 2001 (Pre-RBSP)</td>
<td>110</td>
</tr>
<tr>
<td>Table 17.</td>
<td>Lagoon Dredging Attributable to Sedimentation Occurring between November 2001 and October 2004 (Post-RBSP)</td>
<td>111</td>
</tr>
<tr>
<td>Table 18.</td>
<td>Comparison of Pre- and Post-RBSP Lagoon Dredging Rates</td>
<td>111</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1. The Coast of San Diego County...2
Figure 2. Annual Precipitation at Lindberg Field, 1915-20046
Figure 3. Cumulative Residual Rainfall at Lindberg Field, 1915-20047
Figure 4. Annual Mean Streamflow in the San Luis Rey and San Diego Rivers,
1983-2004 ..8
Figure 5. Monthly Mean Streamflow in the San Luis Rey River9
Figure 6. Monthly Mean Streamflow in the San Diego River9
Figure 7. Wave Characteristics at the Oceanside Buoy, 2004 Monitoring Year11
Figure 8. Relative Incident Energy Index at the CDIP Oceanside Buoy, 1998-200412
Figure 9. Storms Events per Year with Significant Wave Heights Exceeding
7 ft and 10 ft, 1998-2004 ...13
Figure 10a. Beach Profile Transects in the Silver Strand and
Mission Beach Littoral Cells ...26
Figure 10b. Beach Profile Transects and Lagoon Entrances in the
Oceanside Littoral Cell ...27
Figure 11. Transect CB-0880 in Carlsbad ..35
Figure 12a. MSL Shoreline Changes during the 2004 Monitoring Year and RBSP
Monitoring Period in the Silver Strand and Mission Beach Littoral Cells45
Figure 12b. MSL Shoreline Changes during the 2004 Monitoring Year and RBSP
Monitoring Period in the Oceanside Littoral Cell ...46
Figure 13. Time Series of Average MSL Shoreline Change Relative to
Pre-RBSP Condition ..48
Figure 14a. Time Series of Subaerial Volume Change in the
Silver Strand Littoral Cell ...49
Figure 14b. Time Series of Subaerial Volume Change in the
Mission Beach Littoral Cell ...50
Figure 14c. Time Series of Subaerial Volume Change in the
Oceanside Littoral Cell (4 pages) ..51

(continued)
LIST OF FIGURES
(continued)

Figure 15a. Comparison of 2004 MSL Beach Widths with Pre-RBSP Envelope in the Silver Strand and Mission Beach Littoral Cells ..56

Figure 15b. Comparison of 2004 MSL Beach Widths with Pre-RBSP Envelope in the Oceanside Littoral Cell ...57

Figure 16a. Shorezone Volume Changes during the 2004 Monitoring Year and RBSP Monitoring Period in the Silver Strand and Mission Beach Littoral Cells58

Figure 16b. Shorezone Volume Changes during the 2004 Monitoring Year and RBSP Monitoring Period in the Oceanside Littoral Cell.......................................59

Figure 17. Time Series of Average MSL Shorezone Volume Change Relative to Pre-RBSP Condition ...61

Figure 18a. Time Series of Shorezone Volume Change in the Silver Strand Littoral Cell ..62

Figure 18b. Time Series of Shorezone Volume Change in the Mission Beach Littoral Cell ...63

Figure 18c. Time Series of Shorezone Volume Change in the Oceanside Littoral Cell (4 pages)...64

Figure 19. Location Map for Imperial Beach Receiver Site69

Figure 20. Location Map for Mission Beach Receiver Site70

Figure 21. Location Map for Torrey Pines Receiver Site71

Figure 22. Location Map for Del Mar, Fletcher Cove, and Cardiff Receiver Sites72

Figure 23. Location Map for Moonlight Beach, Leucadia, Batiquitos, and South Carlsbad Receiver Sites ..73

Figure 24. Location Map for North Carlsbad and Oceanside Receiver Sites74

Figure 25. Transect SS-0025 at Imperial Beach Receiver Site77

Figure 26. Transect MB-0340 at Mission Beach Receiver Site80

Figure 27. Transect TP-0520 at Torrey Pines Receiver Site82

Figure 28. Transect DM-0580 at Del Mar Receiver Site85

(continued)
LIST OF FIGURES

(continued)

Figure 29. Transect SD-0600 at Fletcher Cove Receiver Site .. 87
Figure 30. Transect SD-0630 at Cardiff Receiver Site .. 89
Figure 31. Transect SD-0670 at Moonlight Beach Receiver Site 93
Figure 32. Transect SD-0690 at Leucadia Receiver Site ... 95
Figure 33. Transect SD-0710 at Batiquitos Receiver Site ... 98
Figure 34. Transect CB-0775 at South Carlsbad Receiver Site 100
Figure 35. Transect CB-0865 at North Carlsbad Receiver Site 102
Figure 36. Transect OS-0930 at Oceanside Receiver Site ... 106
Figure 37. Percentage of Time Lagoon Entrances Open to Tidal Exchange
 Prior and Subsequent to the RBSP ... 108
Figure 38. Condition of Unstabilized Lagoon Entrances following the RBSP 109
Figure 39. Controlling Elevation for Tidal Exchange in Agua Hedionda Lagoon 114
Figure 40. Controlling Elevation for Tidal Exchange in Batiquitos Lagoon 117
Figure 41. Controlling Elevation for Tidal Exchange in San Elijo Lagoon 119
Figure 42. Controlling Elevation for Tidal Exchange in San Dieguito Lagoon 121
Figure 43. Controlling Elevation for Tidal Exchange in Los Peñasquitos Lagoon 124
LIST OF PLATES

Plate 1.	Imperial Beach Receiver Site, April 2001 through October 2004	76
Plate 2.	Mission Beach Receiver Site, April 2001 through October 2004	79
Plate 3.	Torrey Pines Receiver Site, April 2001 through November 2003	77
Plate 4.	Del Mar Receiver Site, April 2001 through October 2004	84
Plate 5.	Fletcher Cove Receiver Site, April 2001 through October 2004	86
Plate 6.	Cardiff Receiver Site, April 2001 through October 2004	90
Plate 7.	Moonlight Beach Receiver Site, April 2001 through October 2004	92
Plate 8.	Leucadia Receiver Site, April 2001 through October 2004	94
Plate 9.	Batiquitos Receiver Site, April 2001 through October 2004	97
Plate 10.	South Carlsbad Receiver Site, April 2001 through October 2004	99
Plate 11.	North Carlsbad Receiver Site, April 2001 through October 2004	103
Plate 12.	Oceanside Receiver Site, April 2001 through October 2004	105
Plate 13.	Agua Hedionda Lagoon North Entrance, April 2001 through November 2003	113
Plate 14.	Batiquitos Lagoon Entrance, April 2001 through October 2003	116
Plate 15.	San Elijo Lagoon Entrance, April 2001 through October 2003	118
Plate 16.	San Dieguito Lagoon Entrance, April 2001 through October 2003	120
Plate 17.	Los Peñasquitos Lagoon Entrance, April 2001 through October 2003	123
1. INTRODUCTION

The study area extends 59 miles from the U.S.-Mexican Border to Oceanside Harbor, and contains the Silver Strand Littoral Cell, the Mission Beach Littoral Cell, and the southern half of the Oceanside Littoral Cell (Figure 1). As in past years, the general objective of the 2004 Monitoring Program was to document changes in the condition of the shorezone, thereby providing a basis for evaluating the impacts of natural events and human intervention. The specific focus was to monitor the fate of nourishment material introduced at twelve receiver beaches under SANDAG’s Regional Beach Sand Project (RBSP). The RBSP, to be discussed in Section 2.2.1, provided a total of 2.1 million cubic yards (cy) of sand to the receiver beaches between April 6 and September 23, 2001.

The 2004 Monitoring Program consisted of a beach component and a lagoon entrance component. The beach component included semi-annual profiling on 61 shore-perpendicular transects, semi-annual oblique aerial photography of the twelve RBSP receiver sites, and monthly beach width measurements at three of the RBSP receiver sites. The lagoon entrance component addressed five sites in the Oceanside Littoral Cell: the jetty-stabilized entrances at Agua Hedionda and Batiquitos Lagoons, and the unstabilized entrances at San Elijo, San Dieguito, and Los Peñasquitos Lagoons (Figure 1). Topographic data and oblique aerial photographs were obtained at each entrance on a semi-annual basis, along with monthly observations and ground photographs at the three unstabilized entrances.
Figure 1. The Coast of San Diego
Although most of the 2004 Monitoring Program was sponsored by SANDAG, beach profile data for selected transects were provided by the Cities of Carlsbad, Encinitas, and Solana Beach. In addition, beach width measurements were provided by the Cities of Carlsbad, Encinitas, and Imperial Beach. Their contributions are gratefully acknowledged by SANDAG.

To provide continuity with SANDAG’s previous monitoring work, the following definitions are adopted:

- **2001 Monitoring Year**: November 2000 through October 2001;
- **2002 Monitoring Year**: November 2001 through October 2002;
- **2003 Monitoring Year**: November 2002 through October 2003;
- **2004 Monitoring Year**: November 2003 through October 2004;
- **RBSP Monitoring Period**: November 2000 through October 2004 (4 years).

Although the primary focus of this report is the 2004 Monitoring Year, emphasis also is placed on the evolution of the County’s beaches during the entire four-year RBSP Monitoring Period.

The remainder of this report provides a detailed account of the 2004 Regional Beach Monitoring Program. Pertinent background information is provided in Section 2, which discusses the environmental conditions and human intervention that occurred during the RBSP Monitoring Period. Monitoring methods are described in Section 3, while Section 4 presents the results. The condition of San Diego County’s beaches is analyzed in Section 5, with particular emphasis on the RBSP receiver sites. Section 6 discusses the condition of the five lagoon entrances in the Oceanside Cell. Conclusions are presented in Section 7. Selected tables, figures, and plates are interspersed with the text, while the remaining tables, plots and plates are provided in a separate volume containing Appendices A through I. All elevations are referenced to Mean Lower Low Water (MLLW), which lies 2.73 ft below Mean Sea Level (MSL).

In the spring of 2003, the National Oceanic and Atmospheric Administration (NOAA) issued revised tidal elevations based on water level data recorded during the 19-year period commencing in 1983 and ending in 2001. In the San Diego area, this new tidal epoch produced an increase of 0.26 feet in the elevation of MLLW relative to that derived from the previous epoch (1960-1978). To facilitate direct comparisons between survey data acquired during the prior and present tidal epochs, all of the elevations measured by SANDAG prior to Spring 2003 were adjusted to the new elevation of MLLW Datum by subtracting 0.26 ft. Shoreline positions, beach widths, and beach volumes then were
recomputed based on the adjusted elevations. In consequence, many of the values for these parameters appearing in this report differ from those presented in documents issued prior to the 2003 Regional Beach Monitoring Program Annual Report (Coastal Frontiers, 2004), and should be regarded as superseding the previously-reported values.
2. BACKGROUND INFORMATION

This section presents background information on the natural and human factors that exert a significant influence on the state of the San Diego County coast. It is intended not only to provide a general context for the monitoring data, but also to aid in evaluating the performance of the twelve RBSP beach fills and their impact on coastal lagoons. Environmental conditions are discussed in Section 2.1, followed by sediment management activities (including the RBSP) in Section 2.2. In Section 2.3, the conditions that have prevailed during the four-year RBSP Monitoring Period are compared with those in the recent past. All data are presented in terms of “monitoring years” that commence on November 1 and end on October 31. The 2004 Monitoring Year, for example, extends from November 1, 2003 through October 31, 2004.

2.1. Environmental Conditions

Environmental conditions of importance to the shorezone include precipitation, streamflow, and waves. During periods of heavy precipitation, rivers and streams transport substantial quantities of beach-quality sediment to the coast. Conversely, riverine sediment input becomes negligible during dry periods (Inman and Masters, 1991). The nature and severity of the wave conditions control the rate of coastal sediment transport, particularly in the case of storm events.

2.1.1. Precipitation

Although the amount of precipitation varies with location in San Diego County, rainfall patterns tend to be similar throughout the region. In other words, periods of above- or below-average rainfall at one site can be used to infer similar conditions at other sites (Elwany, et al., 1998). The data acquired at San Diego’s Lindberg Field were selected to represent precipitation in the entire study area, based on this station’s extended period of record (1914-present).

Figure 2 shows the annual precipitation measured at Lindberg Field from 1915 through 2004 (Western Regional Climate Center, 2005). The average value prior to 2001 was 10.3 inches, with a maximum of 26.4 inches in 1941 and a minimum of 3.6 inches in 1961. During the SANDAG monitoring period that preceded the RBSP (1996-2000), above-average precipitation was recorded only in 1998 (corresponding to the El Niño winter of 1997-98). During the 2001 Monitoring Year, when the RBSP was implemented, the precipitation measured 7.3 inches, or about 30% below average. The precipitation during
the 2002 Monitoring Year was even lower, at 3.3 inches - the lowest value recorded during the entire period of record. In 2003, the total precipitation increased to 10.3 inches, thereby matching the long-term average.

The precipitation during the 2004 Monitoring Year, 11.6 inches, slightly exceeded the long-term average. However, the majority of this precipitation was attributable to a single storm event that occurred in late October 2004. The precipitation for October 2004 (6.4 inches) exceeded the long-term average (0.5 inches) and the previously recorded maximum (3.7 inches) for the month. The storm that accounted for the abnormally high precipitation occurred following the completion of the Fall 2004 Survey. As a result, the beach and lagoon entrance conditions documented by the survey do not reflect the influence of this event.

![Annual Precipitation at Lindberg Field, 1915-2004](image)

Figure 2. Annual Precipitation at Lindberg Field, 1915-2004

The cumulative residual rainfall at Lindberg Field is shown in Figure 3. Residual rainfall represents the difference between the rainfall observed in a particular year and the average annual rainfall. When the residual values are summed over extended periods of time, the resulting cumulative values provide an indication of long-term climatic trends (Inman and Jenkins, 1999). A positive slope to the graph denotes a “wet” period of above-
average precipitation, while a negative slope denotes a “dry” period of below-average precipitation.

![Graph showing Cumulative Residual Rainfall at Lindberg Field, 1915-2004](image)

Figure 3. Cumulative Residual Rainfall at Lindberg Field, 1915-2004

Notwithstanding several short-term exceptions, the period from 1945 through 1977 can be characterized as dry, while the period from 1978 through the mid-1990’s can be characterized as wet. More recently, the three consecutive years of below-average rainfall and the two recent years of near-average rainfall that have followed the 1997-98 El Niño event (1999 to 2003) suggest the onset of another dry period.

2.1.2. Streamflow

Daily streamflow measurements for the San Luis Rey and San Diego Rivers were obtained from the U.S. Geological Survey (USGS, 2005). The mouth of the San Luis Rey River is located approximately 0.5 miles southeast of Oceanside Harbor, while that of the San Diego River adjoins the entrance to Mission Bay (Figure 1). These rivers were selected for analysis because they are among the largest in the study area, and because streamflow data are available for an extended period of record that includes the RBSP Period.
Figure 4 presents the annual mean streamflow measured in each river between 1983 and 2004. Despite average and slightly above-average precipitation each of the last two years (Section 2.1.1), the flow in both rivers has remained below average since the 1997-1998 El Niño event. During the 2004 Monitoring Year, the streamflow in the San Luis Rey River exceeded that recorded in two of the three prior years comprising the RBSP Monitoring Period, while the streamflow in the San Diego River exceeded that recorded in each of the three prior years. It should be noted that two substantial gaps exist in the data for the San Luis Rey: (1) October 1992-August 1993, and (2) November 1997-May 1998. Both of these periods were characterized by high streamflow rates in the San Diego River, suggesting that the true long-term average for the San Luis Rey is higher than that shown in Figure 4.

Figures 5 and 6 compare the monthly mean streamflow in each river for each year of the RBSP Monitoring Period with the long-term monthly mean values for the 18-yr period between 1983 and 2000. As in the case of the annual data presented in Figure 4, the monthly data indicate that the RBSP Monitoring Period has been characterized by below-average streamflow rates. The most notable exception occurred in October 2004, when the
Figure 5. Monthly Mean Streamflow in the San Luis Rey River

Figure 6. Monthly Mean Streamflow in the San Diego River
flows in the San Luis Rey and San Diego Rivers were 11 to 24 times greater than the long-term average values, respectively. It should be noted, however, that the long-term monthly values for the San Luis Rey would be higher than those shown in Figure 5 were it not for the two data gaps identified above.

The high streamflow values for October 2004 correspond to the record high precipitation for the month discussed previously. As noted in Section 2.2.1, the storm that accounted for the abnormally high precipitation and streamflows occurred following the completion of the Fall 2004 Survey. As a result, the beach and lagoon entrance conditions documented by the survey do not reflect the influence of this event.

2.1.3. Wave Climate

Two measures of the wave climate were used to compare the potential for sediment transport during the RBSP Monitoring Period with that in previous years: (1) total wave energy, and (2) the number of storm events. Although both measures are imperfect, they nevertheless provide a first-order basis for the desired inter-annual comparison.

The analysis was undertaken with wave measurements acquired under the auspices of the Coastal Data Information Program (CDIP), which is operated by Scripps Institution of Oceanography (2005). The CDIP Oceanside Buoy was selected as the data source, primarily because the period of record (May 1997-present) exceeds that of the other offshore measurement stations in the area (Point La Jolla, Torrey Pines, and Dana Point).

The significant wave height (H_s), peak wave period (T_p), and wave direction recorded at the Oceanside Buoy during the 2004 Monitoring Year are presented as time series in Figure 7. Northerly swell characteristic of the winter months predominated in December through February, while southerly swell characteristic of the summer months predominated from mid-April through October. The remaining months, March and early-April in the spring and November in the fall, served as transitional periods with a mixture of northerly and southerly swell. The three most severe storms occurred in December, February, and October.

The total wave energy in each Monitoring Year from 1998 through 2004 was compared using the Relative Incident Energy Index (E_r) developed by Seymour (1998). This index is based on the following proportionality between the wave power per unit crest length (P) in deep water, the significant wave height (H_s) and the peak wave period (T_p):

$$P \sim H_s^2 T_p$$

(1)
Figure 7. Wave Characteristics at the Oceanside Buoy, 2004 Monitoring Year
The total energy per unit crest length (E) delivered in a year is found by integrating the wave power (P) over the time (t):

$$E = \int P \, dt$$ \hspace{1cm} (2)

Using Equations (1) and (2) with the wave height expressed in meters, the wave period in seconds, and the duration in hours, Seymour defined E_r as follows:

$$E_r = E/1000$$ \hspace{1cm} (3)

The computed values of E_r are shown in Figure 8. Gaps in the Oceanside Buoy data were accounted for by assuming that the average wave power during the remainder of the year prevailed during the periods lacking measurements. The highest Energy Index, with a value of 149, occurred during the 1998 El Niño year. The index then decreased during each of the next four years, attaining a minimum value of 87 in 2002 before increasing to 103 in 2003. In 2004 the index was 100, a modest decrease from 2003 and a relatively low value compared to the prior years.

![Wave Energy Index](image.png)

Figure 8. Relative Incident Energy Index at the CDIP Oceanside Buoy, 1998-2004

Figure 9 displays the number of storms per year with H_s exceeding threshold values of 7 ft (2.1 m) and 10 ft (3.0 m). As in the case of the Relative Incident Energy Index, the storm frequency data indicate that the most severe conditions occurred in 1998, when H_s exceeded 7 ft on sixteen occasions and 10 ft on six occasions. During the four years encompassing the RBSP Monitoring Period (2001 to 2004), H_s surpassed 7 ft between six and seven times per year, and surpassed 10 ft between zero and two times per year. During the 2004 Monitoring Year, H_s surpassed 7 ft on seven occasions, but never exceeded 10 ft. However, H_s did reach 9.9 ft on three occasions: December 12, 2003 with a peak period of
7.7 sec from the northwest; February 22, 2004 with a peak period of 7.7 sec from the south; and February 27, 2004 with a peak period of 15.4 sec from the west).

![Graph showing storm events per year with significant wave heights exceeding 7 ft and 10 ft, 1998-2004]

Figure 9. Storm Events per Year with Significant Wave Heights Exceeding 7 ft and 10 ft, 1998-2004

2.2. Sediment Management Activities

Human activities that exert a significant influence on the San Diego County coast include beach nourishment projects such as the RBSP, and sand bypassing at littoral barriers such as Oceanside Harbor. The RBSP is discussed in Section 2.2.1, other nourishment projects in Section 2.2.2, and sand bypassing in Section 2.2.3.

2.2.1. Regional Beach Sand Project

In 1993, SANDAG adopted a comprehensive plan for erosion mitigation known as the “Shoreline Preservation Strategy for the San Diego Region.” The Strategy proposed an extensive beach building and maintenance program to provide for environmental quality, recreation, and storm protection in the coastal zone. Following a number of modest beach nourishment projects that were undertaken primarily on an opportunistic basis i.e., when sand became available from other sources), the Regional Beach Sand Project (RBSP) was conceived as a more comprehensive approach to restoring the County’s sand-starved beaches.
Between April 6 and September 23, 2001, the RBSP provided 2.1 million cy of beach-quality sand to twelve receiver beaches located between Imperial Beach and Oceanside. The material was excavated from six offshore borrow areas using a trailing suction hopper dredge, and pumped onto the subaerial portion of each receiver beach (Noble, 2002). Once on the beach, the sand was shaped to the design configuration using conventional earth-moving equipment. The median grain size (d_{50}) varied considerably among the borrow areas, ranging from 0.14 mm (fine sand) to 0.62 mm (coarse sand) (Noble Consultants, 2001).

Table 1 provides the volume, dimensions, and median grain size of each beach fill, along with the construction period. The majority of the sand, 1.8 million cy, was used to nourish ten receiver beaches in the Oceanside Littoral Cell. The nourishment quantities at these sites ranged from 421,000 cy at Oceanside to 101,000 cy at Cardiff. In the Mission Beach Cell, 151,000 cy were placed at Mission Beach while in the Silver Strand Cell, 120,000 cy were placed at Imperial Beach.

2.2.2. Other Nourishment Projects

A number of beach nourishment projects were undertaken in San Diego County prior to the RBSP, as well as two small projects after placement of the RBSP fill material. Nearly all of the pre-RBSP nourishment projects depended on “sand of opportunity” that was derived from activities whose primary motive was other than beach replenishment. The largest sources of opportunistic nourishment were the dredge spoils associated with lagoon restoration and harbor maintenance. The non-RBSP nourishment projects conducted between November 1993 and October 2004 are summarized below by littoral cell. Two periods are considered: (1) the seven-year span from November 1993 through October 2000, and (2) the RBSP Monitoring Period (November 2000 through October 2004). The November 1993-October 2000 time period was selected for analysis because it commences with the adoption of SANDAG’s Shoreline Preservation Strategy and concludes just prior to the inception of the RBSP.

Silver Strand Littoral Cell

Five opportunistic beach nourishment projects were undertaken in the Silver Strand Littoral Cell during the seven-year period that preceded the RBSP. One was associated with lagoon enhancement at the Tijuana Estuary, while the other four originated with construction and maintenance activities in San Diego Harbor. As shown in Table 2, these projects resulted in an average annual nourishment rate of 73,000 cubic yards/year (cy/yr).
One opportunistic sand replenishment project has been undertaken in the Silver Strand Cell since the placement of the RBSP fill material at Imperial Beach in 2001. Approximately 301,000 cy of material dredged from San Diego Harbor were placed offshore, south of the pier in Imperial Beach between October 2004 and February 2005 (Ryan, 2005). Because the project commenced after the Fall 2004 Survey was completed, the beach condition does not reflect the influence of this event. As a result, the entire nourishment quantity will be attributed to the 2005 Monitoring Year.

Table 1. RBSP Beach Fills

<table>
<thead>
<tr>
<th>Littoral Cell</th>
<th>Receiver Beach</th>
<th>Fill Characteristics</th>
<th>Construction Period(2)</th>
<th>Volume (cy)</th>
<th>Length (ft)</th>
<th>Width (ft)</th>
<th>d50 (mm)(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver Strand</td>
<td>Imperial Bch</td>
<td>120,000</td>
<td>5/22 - 6/04</td>
<td>2300</td>
<td>120</td>
<td>0.24-0.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Nourishment in Silver Strand Cell = 120,000 cy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mission Beach</td>
<td>Mission Bch</td>
<td>151,000</td>
<td>5/10 – 5/21</td>
<td>2300</td>
<td>200</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Nourishment in Mission Beach Cell = 151,000 cy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oceanside</td>
<td>Torrey Pines</td>
<td>245,000</td>
<td>4/06 – 4/27</td>
<td>1600</td>
<td>160</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Del Mar</td>
<td>183,000</td>
<td>4/27 – 5/10</td>
<td>3200</td>
<td>120</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fletcher Cove</td>
<td>146,000</td>
<td>6/15 – 6/24</td>
<td>1900</td>
<td>70</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiff</td>
<td>101,000</td>
<td>8/02 – 8/10</td>
<td>900</td>
<td>150</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moonlight Bch</td>
<td>105,000</td>
<td>8/10 – 8/16</td>
<td>1100</td>
<td>180</td>
<td>0.34-0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leucadia</td>
<td>132,000</td>
<td>6/04 – 6/15</td>
<td>2700</td>
<td>120</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Batiquitos</td>
<td>117,000</td>
<td>8/16 – 8/23</td>
<td>1500</td>
<td>180</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Carlsbad</td>
<td>158,000</td>
<td>6/25 – 7/06</td>
<td>2000</td>
<td>180</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. Carlsbad</td>
<td>225,000</td>
<td>7/06 – 8/02</td>
<td>3100</td>
<td>100</td>
<td>0.14-0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oceanside</td>
<td>421,000</td>
<td>8/24 – 9/23</td>
<td>4400</td>
<td>185</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Nourishment in Oceanside Cell = 1,833,000 cy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total RBSP Nourishment = 2,104,000 cy

Notes:
(1) d50 represents median grain size of fill material.
(2) All nourishment activities were conducted in 2001

Source: Noble Consultants, 2001
Table 2. Beach Nourishment in the Silver Strand Littoral Cell Preceding the RBSP, November 1993 through October 2000

<table>
<thead>
<tr>
<th>Project</th>
<th>Date</th>
<th>Sediment Source</th>
<th>Placement Location</th>
<th>Nourishment Quantity (cy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Navy Pier 2 Dredging</td>
<td>1995</td>
<td>San Diego Harbor</td>
<td>Imperial Beach (nearshore)</td>
<td>233,000</td>
</tr>
<tr>
<td>U.S. Coast Guard Ballast Point Dredging</td>
<td>1995</td>
<td>San Diego Harbor</td>
<td>Imperial Beach (nearshore)</td>
<td>41,000</td>
</tr>
<tr>
<td>SIO Nimitz Marine Facility Dredging</td>
<td>1996</td>
<td>San Diego Harbor</td>
<td>Imperial Beach (nearshore)</td>
<td>47,000</td>
</tr>
<tr>
<td>San Diego Harbor Maintenance Dredging</td>
<td>1996</td>
<td>San Diego Harbor</td>
<td>Silver Strand State Beach (nearshore)</td>
<td>175,000</td>
</tr>
<tr>
<td>Tijuana Estuary Tidal Restoration Project</td>
<td>1997</td>
<td>Tijuana Estuary</td>
<td>South of River Mouth</td>
<td>18,000</td>
</tr>
</tbody>
</table>

Average Annual Nourishment Rate in the Silver Strand Cell = 73,000 cy/yr

Source: SANDAG, 1996 and 1999a; Sachs, 2002

Mission Beach Littoral Cell

Nourishment activity in the Mission Beach Cell preceding the RBSP was limited to the placement of approximately 12,000 cy of sand off of Mission Beach as part of the aborted U.S. Navy Homeporting Project. This small amount equates to an average annual nourishment rate of about 2,000 cy/yr for the 1993-2000 period of interest. Other than the RBSP fill at Mission Beach, the littoral cell has received no additional nourishment during the RBSP Monitoring Period.

Oceanside Littoral Cell

Eight nourishment projects, seven of which were opportunistic, were undertaken in the Oceanside Cell between 1993 and 2000. As enumerated in Table 3, the total volume of 2.75 million cy was equivalent to an average annual nourishment rate of 393,000 cy/yr. Nearly two thirds of the material was derived from the Batiquitos Lagoon restoration project, which provided 1.8 million cy for beach replenishment in Carlsbad. The only non-opportunistic beach fill activity occurred at Moonlight Beach, where approximately 1,000 cy of purchased sand was placed as a protective berm each year from 1996 through 2000.
Table 3. Beach Nourishment in the Oceanside Littoral Cell Preceding the RBSP, November 1993 through October 2000

<table>
<thead>
<tr>
<th>Project</th>
<th>Date</th>
<th>Sediment Source</th>
<th>Placement Location</th>
<th>Nourishment Quantity (cy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batiquitos Lagoon Enhancement</td>
<td>1994-97</td>
<td>Batiquitos Lagoon</td>
<td>Carlsbad</td>
<td>1,800,000</td>
</tr>
<tr>
<td>Descanso/Carlsbad Blvd. Lot Division</td>
<td>1994</td>
<td>Inland</td>
<td>Carlsbad</td>
<td>20,000</td>
</tr>
<tr>
<td>Santa Margarita River Desilting</td>
<td>1995</td>
<td>River Mouth</td>
<td>Oceanside</td>
<td>40,000</td>
</tr>
<tr>
<td>Moonlight Beach Nourishment</td>
<td>1996-2000</td>
<td>Inland (non-opportunistic)</td>
<td>Encinitas</td>
<td>5,000</td>
</tr>
<tr>
<td>U.S. Navy Homeporting</td>
<td>1997</td>
<td>North Island</td>
<td>Oceanside</td>
<td>102,000</td>
</tr>
<tr>
<td>Sand-for-Trash Pilot Program</td>
<td>1997</td>
<td>Inland</td>
<td>Del Mar (nearshore)</td>
<td>170,000</td>
</tr>
<tr>
<td>Agua Hedionda Facilities Modification</td>
<td>1998</td>
<td>Agua Hedionda Lagoon</td>
<td>Carlsbad</td>
<td>560,000</td>
</tr>
<tr>
<td>North County Commuter Rail Project</td>
<td>1999</td>
<td>Inland</td>
<td>Solana Beach</td>
<td>54,000</td>
</tr>
</tbody>
</table>

Average Annual Nourishment Rate in the Oceanside Cell (Nov 93 – Oct 00) = 393,000 cy/yr

Source: SANDAG, 1996, 1999a; Sachs, 2002

Table 4 lists the two small non-RBSP nourishment projects undertaken in the Oceanside Cell during the RBSP Monitoring Period. Both were conducted at Moonlight Beach, where the aforementioned practice of adding 1,000 cy per year to construct a protective berm was continued in 2001 and 2002. In 2003 and 2004, the berm was constructed from material already present on the beach rather than from imported material (Weldon, 2005).

2.2.3. Sand Bypassing

Sand bypassing is used to return sediment to the littoral system that has been trapped by coastal features such as harbors, lagoon entrances, and jetties. Although bypassing does not increase the quantity of sediment in the littoral system, it plays a crucial role in maintaining the distribution of sediment within that system. Because sediment trapping is an ongoing process, bypassing operations typically are conducted at periodic intervals.
Table 4. Non-RBSP Beach Nourishment in the Oceanside Littoral Cell, November 2000 through October 2004

<table>
<thead>
<tr>
<th>Project</th>
<th>Date</th>
<th>Sediment Source</th>
<th>Placement Location</th>
<th>Nourishment Quantity (cy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moonlight Beach Nourishment</td>
<td>2001</td>
<td>Inland (non-opportunistic)</td>
<td>Encinitas</td>
<td>1,000</td>
</tr>
<tr>
<td>Moonlight Beach Nourishment</td>
<td>2002</td>
<td>Inland (non-opportunistic)</td>
<td>Encinitas</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Average Annual Nourishment Rate in the Oceanside Cell (Nov 00 – Oct 04) = <1,000 cy/yr

Source: Frenken, 2002; Keeley, 2003; Keeley, 2004; Weldon, 2005

Bypassing is not undertaken in the Silver Strand and Mission Beach Cells, but occurs at Batiquitos Lagoon, Agua Hedionda Lagoon, Oceanside Harbor and San Elijo Lagoon in the Oceanside Cell. The bypassing operations at Batiquitos were initiated in 1997 following lagoon restoration, while the bypassing operations at Agua Hedionda and Oceanside Harbor have been performed on a regular basis for decades. A form of bypassing has been conducted at San Elijo since 1994 in conjunction with the entrance channel maintenance activities. Information regarding this operation became available only during the last year. Hence, it was not included in prior annual reports. The sediment quantities bypassed at each site between November 1993 and October 2000 (pre-RBSP) are shown in Table 5. The values for San Elijo Lagoon should be regarded as first-order estimates because maintenance records do not segregate bypass quantities from entrance channel breaching quantities (Gibson, 2005).

Relatively high bypass rates, averaging 252,000 and 143,000 cy/yr, were maintained at Oceanside and Agua Hedionda, respectively. At San Elijo Lagoon, the estimated average bypass rate was 14,000 cy/yr. The average rate at Batiquitos was only 2,000 cy/yr. The relatively low rate at Batiquitos may be explained by the aforementioned lagoon restoration project. The entrance channel was first opened to continuous tidal exchange in late 1995 (Webb, 2004), and the restoration project was not completed until 1997. In consequence, the years preceding the RBSP represented a transition period for the lagoon, and the low bypass rate at Batiquitos should be regarded as anomalous.

The sediment quantities bypassed at each site during the RBSP Monitoring Period (November 2000-October 2004) are presented in Table 6. At Oceanside Harbor, bypass operations were conducted in each of the four Monitoring Years. The average rate of 285,000 cy/yr exceeded the pre-RBSP rate by 33,000 cy/yr.
Table 5. Sand Bypassing in the Oceanside Littoral Cell Preceding the RBSP, November 1993 through October 2000

<table>
<thead>
<tr>
<th>Bypass Project</th>
<th>Date</th>
<th>Placement Location</th>
<th>Bypass Quantity (cy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batiquitos Lagoon</td>
<td>1999</td>
<td>South of Entrance</td>
<td>6,000</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>South of Entrance</td>
<td>4,000</td>
</tr>
<tr>
<td>Average Annual Bypass Rate at Batiquitos Lagoon = 2,000 cy/yr (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua Hedionda Lagoon</td>
<td>1994</td>
<td>Carlsbad</td>
<td>159,000</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>Carlsbad</td>
<td>443,000</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>Carlsbad</td>
<td>197,000</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>Carlsbad</td>
<td>203,000</td>
</tr>
<tr>
<td>Average Annual Bypass Rate at Agua Hedionda Lagoon = 143,000 cy/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oceanside Harbor</td>
<td>1994</td>
<td>Oceanside</td>
<td>483,000</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>Oceanside</td>
<td>161,000</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>Oceanside</td>
<td>162,000</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>Oceanside</td>
<td>130,000</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>Oceanside</td>
<td>315,000</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>Oceanside</td>
<td>187,000</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>Oceanside</td>
<td>327,000</td>
</tr>
<tr>
<td>Average Annual Bypass Rate at Oceanside Harbor = 252,000 cy/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Elijo Lagoon</td>
<td>1995</td>
<td>South of Entrance</td>
<td>6,000</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>South of Entrance</td>
<td>8,000</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>South of Entrance</td>
<td>31,000</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>South of Entrance</td>
<td>12,000</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>South of Entrance</td>
<td>17,000</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>South of Entrance</td>
<td>23,000</td>
</tr>
<tr>
<td>Average Annual Bypass Rate at San Elijo Lagoon = 14,000 cy/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Dillingham, 2002; Tucker, 2002; Ryan, 2003; Gibson, 2005

Note: (1) Rate computed for the three-year period following lagoon restoration (1998 to 2000).

At Agua Hedionda, where bypassing typically occurs every second year, such operations were undertaken in 2001 and 2003, and are scheduled for 2005. The average rate during the four-year RBSP Monitoring Period, 192,000 cy/yr, was higher than the pre-RBSP rate of 143,000 cy/yr. It is noteworthy that the unusually high quantity of material bypassed.
in 2001, 429,000 cy, was dredged prior to or concurrent with the start of the RBSP nourishment program. In consequence, the increased bypass rate at Agua Hedionda during the RBSP Monitoring Period cannot be attributed to trapping of the nourishment material.

Table 6. Sand Bypassing in the Oceanside Littoral Cell
November 2000 through October 2004

<table>
<thead>
<tr>
<th>Bypass Project</th>
<th>Date</th>
<th>Placement Location</th>
<th>Bypass Quantity (cy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batiquitos Lagoon</td>
<td>2001</td>
<td>South of Entrance</td>
<td>45,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average Annual Bypass Rate at Batiquitos Lagoon = 11,000 cy/yr</td>
</tr>
<tr>
<td>Agua Hedionda Lagoon</td>
<td>2001</td>
<td>Carlsbad</td>
<td>429,000</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>Carlsbad</td>
<td>337,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average Annual Bypass Rate at Agua Hedionda Lagoon = 192,000 cy/yr</td>
</tr>
<tr>
<td>Oceanside Harbor</td>
<td>2001</td>
<td>Oceanside</td>
<td>80,000</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>Oceanside</td>
<td>400,000</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>Oceanside</td>
<td>438,000</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>Oceanside</td>
<td>220,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average Annual Bypass Rate at Oceanside Harbor = 285,000 cy/yr</td>
</tr>
<tr>
<td>San Elijo Lagoon</td>
<td>2001</td>
<td>South of Entrance</td>
<td>23,000</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>South of Entrance</td>
<td>18,000</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>South of Entrance</td>
<td>32,000</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>South of Entrance</td>
<td>30,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average Annual Bypass Rate at San Elijo Lagoon = 26,000 cy/yr</td>
</tr>
</tbody>
</table>

Sources: Dillingham, 2002; Tucker, 2002; Ryan, 2003, Hughes 2003, Ryan, 2005; Gibson, 2005

At Batiquitos, bypassing was undertaken only in 2001. Although the resulting average rate of 11,000 cy/yr during the RBSP Monitoring period exceeded the pre-RBSP average of 2,000 cy/yr, the latter figure is anomalously low for the reasons presented above. In addition, 75,000 cy of sediment were dredged from the lagoon in 2003 but used to enhance least tern nesting sites within the lagoon rather than for bypassing (Dillingham, 2004). Hence, the bypass rate could have been substantially higher during the RBSP Monitoring Period if this material had been returned to the littoral system.

During the four-year RBSP Monitoring Period, the estimated average bypass rate at San Elijo was 26,000 cy/yr. Although this rate exceeded the pre-RBSP average of 14,000 cy/yr, the higher rate is attributable at least in part to a conscious increase in the level of maintenance activities commencing in 2000. This change reflects an increase in the funding available to conduct the maintenance operations (Gibson, 2005).
2.3. The RBSP Monitoring Period in Perspective

Table 7 compares the environmental conditions that prevailed during the RBSP Monitoring Period with those in the recent past. Although the precipitation recorded in 2004 slightly exceeded the pre-RBSP average, the streamflow, wave energy and storm frequency were below average. When the four-year RBSP Monitoring Period is considered, the average values of these parameters are well below the pre-RBSP averages. The implications are threefold:

- The mild wave conditions helped to prolong the life of the beach fills.
- The scant precipitation and low streamflows failed to deliver significant quantities of beach-quality sediment to the coast.
- The low streamflows failed to flush coastal sediment from the lagoon entrances in the Oceanside Cell.

In Table 8, the beach nourishment volume provided to each littoral cell during the RBSP Monitoring Period is compared with the average annual volume provided during the seven prior monitoring years. To aid in assessing the significance of the RBSP, comparisons are made both with and without the RBSP fill quantities.

As indicated above, the only non-RBSP nourishment provided during the RBSP Monitoring Period was 2,000 cy (less than 1,000 cy/yr) at Moonlight Beach. As a result, approximately 90% of the RBSP fill material (1,868,000 cy) may be regarded as compensating for the average annual nourishment of 467,000 cy/yr provided from other sources in the years preceding the RBSP. The remaining RBSP material, 236,000 cy, represents incremental nourishment. Most of this nourishment was concentrated in the Oceanside Cell, which received an additional 264,000 cy (equivalent to 66,000 cy/yr over the four-year RBSP Monitoring Period). The Mission Beach Cell received an additional 144,000 cy (36,000 cy/yr), while the Silver Strand Cell incurred a deficit of 172,000 cy (43,000 cy/yr) due to the lack of nourishment activities other than the RBSP. Of particular note is the fact that absolutely no nourishment was provided in any of the three littoral cells during the 2003 and 2004 Monitoring Years (as indicated earlier, the Imperial Beach nourishment program that began on October 25, 2004 will be attributed to the 2005 Monitoring Year).

The sand bypass rates at Batiquitos, Agua Hedionda, Oceanside Harbor, and San Elijo during the RBSP Monitoring Period are displayed with the average values from the
Table 7. Environmental Conditions: RBSP Monitoring Period vs. Historical Average

<table>
<thead>
<tr>
<th>Parameter(1)</th>
<th>Historical Average</th>
<th>RBSP Average(5)</th>
<th>% of Hist. Average(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation(2) (in.)</td>
<td>10.3</td>
<td>8.1</td>
<td>79%</td>
</tr>
<tr>
<td>Streamflow(3) (cfs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Luis Rey River</td>
<td>49.3</td>
<td>20.7</td>
<td>42%</td>
</tr>
<tr>
<td>San Diego River</td>
<td>43.4</td>
<td>21.1</td>
<td>49%</td>
</tr>
<tr>
<td>Wave Climate(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Index</td>
<td>126</td>
<td>98</td>
<td>78%</td>
</tr>
<tr>
<td>Storms w/ $H_s>7$ ft</td>
<td>9.7</td>
<td>6.8</td>
<td>70%</td>
</tr>
<tr>
<td>Storms w/ $H_s>10$ ft</td>
<td>3.3</td>
<td>1.0</td>
<td>30%</td>
</tr>
</tbody>
</table>

Notes:
(1) Parameters represent annual values.
(2) Historical Average Precipitation based on the period 1915-2000.
(3) Historical Average Streamflow based on the period 1983-2000.
(4) Historical Average Energy Index and Storms based on the period 1998-2000.
(6) % of Hist. Average represents RBSP Average divided by Historical Average.

Table 8. Beach Nourishment Rates: RBSP Monitoring Period vs. Historical Average

<table>
<thead>
<tr>
<th>Littoral Cell</th>
<th>Historical Average(1) (cy/yr)</th>
<th>RBSP Average(2) (cy/yr)</th>
<th>Difference(3) (cy/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without RBSP</td>
<td>With RBSP</td>
<td>Without RBSP</td>
</tr>
<tr>
<td>Silver Strand</td>
<td>73,000</td>
<td>0</td>
<td>30,000</td>
</tr>
<tr>
<td>Mission Beach</td>
<td>2,000</td>
<td>0</td>
<td>38,000</td>
</tr>
<tr>
<td>Oceanside</td>
<td>393,000</td>
<td>1,000</td>
<td>459,000</td>
</tr>
<tr>
<td>Total</td>
<td>468,000</td>
<td>1,000</td>
<td>527,000</td>
</tr>
</tbody>
</table>

Notes:
(1) Historical Average based on the period 1993-2000.
(2) RBSP Average based on the RBSP Monitoring Period (2001-2004).
(3) Difference represents RBSP Average minus Historical Average.

seven prior monitoring years in Table 9. At Batiquitos, where lagoon restoration was undertaken during the pre-RBSP monitoring years, comparison of the two rates is not meaningful. At Oceanside, Agua Hedionda and San Elijo, the RBSP rate exceeded the prior values by 33,000 cy/yr, 49,000 cy/yr, and 12,000 cy/yr, respectively. This increase in the bypassing rate constituted a direct benefit to the receiving beaches, which were located south of Oceanside Harbor, both north and south of Agua Hedionda, and south of San Elijo Lagoon.
Table 9. Sand Bypassing: RBSP Monitoring Period vs. Historical Average

<table>
<thead>
<tr>
<th>Location</th>
<th>Historical Average<sup>(1)</sup> (cy/yr)</th>
<th>RBSP Average<sup>(2)</sup> (cy/yr)</th>
<th>Difference<sup>(3)</sup> (cy/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batiquitos</td>
<td>2,000</td>
<td>11,000</td>
<td>n/m<sup>(4)</sup></td>
</tr>
<tr>
<td>Agua Hedionda</td>
<td>143,000</td>
<td>192,000</td>
<td>49,000</td>
</tr>
<tr>
<td>Oceanside Harbor</td>
<td>252,000</td>
<td>285,000</td>
<td>33,000</td>
</tr>
<tr>
<td>San Elijo</td>
<td>14,000</td>
<td>26,000</td>
<td>12,000</td>
</tr>
</tbody>
</table>

Notes:
⁽¹⁾ Historical Average based on the period 1993-2000.
⁽²⁾ RBSP Average based on the RBSP Monitoring Period (2001-2004).
⁽³⁾ Difference represents RBSP Average minus Historical Average
⁽⁴⁾ Difference not meaningful because Historical Average bypass rate was derived from the period during and immediately after lagoon restoration.
3. MONITORING METHODS

As indicated in Section 1, the general objective of the 2004 Regional Beach Monitoring Program was to detect changes in the condition of the shorezone between the U.S.-Mexican Border and Oceanside Harbor. The specific focus was to track the performance of the twelve RBSP beach fills, including their impacts on the neighboring beaches and lagoon entrances.

Although the two program components, beach monitoring and lagoon entrance monitoring, resembled those in the years preceding the RBSP, both were expanded in 2001 to develop more detailed information about the outcome of the nourishment activities. The underlying rationale was to provide coverage of each of the twelve receiver beaches, enhanced coverage of four of these sites (North Carlsbad, Leucadia, Mission Beach, and Imperial Beach), and enhanced coverage of the three unstabilized lagoon entrances in the Oceanside Cell (San Elijo, San Dieguito, and Los Peñasquitos). The program was further enhanced in 2002 by adding four beach profile transects and removing one transect of questionable utility. The 2004 monitoring program was identical to those undertaken in 2002 and 2003.

Data acquisition and reduction under each program component are described in the subsections that follow.

3.1. Beach Monitoring

The beach monitoring component consisted of semi-annual beach profile surveys, semi-annual oblique aerial photography, and monthly beach width measurements. The beach profiling and aerial photography were performed by Coastal Frontiers personnel, while the beach width measurements were made by representatives of the cities in whose jurisdictions the beaches were located.

3.1.1. Semi-Annual Beach Profile Surveys

Beach profile data were obtained in the Spring and Fall of 2004, corresponding to the transitions between the winter and summer wave seasons along 61 previously established transects. The locations of the transects are listed in Table 10, and illustrated in Figures 10a and 10b.
Table 10. Beach Profile Transect Locations

<table>
<thead>
<tr>
<th>TRANSECT(5)</th>
<th>LOCATION</th>
<th>SPONSOR</th>
<th>TRANSECT(5)</th>
<th>LOCATION</th>
<th>SPONSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS-0003</td>
<td>Tijuana Estuary</td>
<td>SANDAG</td>
<td>SS-0035</td>
<td>Imperial Beach</td>
<td>SANDAG</td>
</tr>
<tr>
<td>SS-0005</td>
<td>Tijuana Estuary</td>
<td>SANDAG</td>
<td>SS-0050</td>
<td>Imperial Beach</td>
<td>SANDAG</td>
</tr>
<tr>
<td>SS-0015</td>
<td>Imperial Beach</td>
<td>SANDAG</td>
<td>SS-0077</td>
<td>Silver Strand</td>
<td>SANDAG</td>
</tr>
<tr>
<td>SS-0020</td>
<td>Imperial Beach</td>
<td>SANDAG</td>
<td>SS-0090</td>
<td>Silver Strand</td>
<td>SANDAG</td>
</tr>
<tr>
<td>SS-0025</td>
<td>Imperial Beach</td>
<td>SANDAG</td>
<td>SS-0160</td>
<td>Coronado</td>
<td>SANDAG</td>
</tr>
<tr>
<td>SS-0035</td>
<td>Imperial Beach</td>
<td>SANDAG</td>
<td>MB-0384</td>
<td>Mission Beach</td>
<td>SANDAG</td>
</tr>
<tr>
<td>OB-0230</td>
<td>Ocean Beach</td>
<td>SANDAG</td>
<td>PB-0408</td>
<td>Pacific Beach</td>
<td>SANDAG</td>
</tr>
<tr>
<td>MB-0310</td>
<td>Mission Beach</td>
<td>SANDAG</td>
<td>MB-0320</td>
<td>Mission Beach</td>
<td>SANDAG</td>
</tr>
<tr>
<td>MB-0335</td>
<td>Mission Beach</td>
<td>SANDAG</td>
<td>MB-0340</td>
<td>Mission Beach</td>
<td>SANDAG</td>
</tr>
<tr>
<td>LJ-0443</td>
<td>La Jolla</td>
<td>SANDAG</td>
<td>SD-0690</td>
<td>Leucadia</td>
<td>SANDAG</td>
</tr>
<tr>
<td>LJ-0450</td>
<td>La Jolla</td>
<td>SANDAG</td>
<td>SD-0695</td>
<td>Leucadia</td>
<td>SANDAG</td>
</tr>
<tr>
<td>LJ-0445</td>
<td>La Jolla</td>
<td>SANDAG</td>
<td>SD-0700</td>
<td>Grandview</td>
<td>SANDAG</td>
</tr>
<tr>
<td>LJ-0460</td>
<td>Scripps Pier</td>
<td>SANDAG</td>
<td>SD-0710</td>
<td>Batiquitos</td>
<td>Encinitas</td>
</tr>
<tr>
<td>TP-0470</td>
<td>Blacks Beach</td>
<td>SANDAG</td>
<td>CB-0720</td>
<td>Batiquitos</td>
<td>SANDAG</td>
</tr>
<tr>
<td>TP-0520</td>
<td>Torrey Pines</td>
<td>SANDAG</td>
<td>CB-0740</td>
<td>South Carlsbad</td>
<td>Carlsbad</td>
</tr>
<tr>
<td>TP-0530</td>
<td>Torrey Pines</td>
<td>SANDAG</td>
<td>CB-0760</td>
<td>Ponto Beach</td>
<td>SANDAG</td>
</tr>
<tr>
<td>DM-0565</td>
<td>South Del Mar</td>
<td>SANDAG</td>
<td>CB-0775</td>
<td>South Carlsbad</td>
<td>SANDAG</td>
</tr>
<tr>
<td>DM-0560</td>
<td>Del Mar</td>
<td>SANDAG</td>
<td>CB-0780</td>
<td>Carlsbad</td>
<td>Carlsbad</td>
</tr>
<tr>
<td>DM-0580</td>
<td>Del Mar</td>
<td>SANDAG</td>
<td>CB-0800</td>
<td>Carlsbad</td>
<td>Carlsbad</td>
</tr>
<tr>
<td>DM-0590</td>
<td>Del Mar</td>
<td>SANDAG</td>
<td>CB-0820</td>
<td>Aqua Hedionda</td>
<td>Carlsbad</td>
</tr>
<tr>
<td>SD-0595</td>
<td>Seascape Surf</td>
<td>Solana</td>
<td>CB-0830</td>
<td>Carlsbad</td>
<td>SANDAG</td>
</tr>
<tr>
<td>SD-0600</td>
<td>Fletcher Cove</td>
<td>SANDAG</td>
<td>CB-0840</td>
<td>Carlsbad</td>
<td>Carlsbad</td>
</tr>
<tr>
<td>SD-0610</td>
<td>Tide Park</td>
<td>Solana</td>
<td>CB-0850</td>
<td>Carlsbad</td>
<td>Carlsbad</td>
</tr>
<tr>
<td>SD-0620</td>
<td>Seaside Park</td>
<td>Encinitas</td>
<td>CB-0865</td>
<td>Carlsbad</td>
<td>SANDAG</td>
</tr>
<tr>
<td>SD-0625</td>
<td>San Elijo</td>
<td>Encinitas</td>
<td>CB-0880</td>
<td>Buena Vista</td>
<td>SANDAG</td>
</tr>
<tr>
<td>SD-0630</td>
<td>Cardiff</td>
<td>SANDAG</td>
<td>OS-0900</td>
<td>Oceanside</td>
<td>Carlsbad</td>
</tr>
<tr>
<td>SD-0650</td>
<td>San Elijo Park</td>
<td>Encinitas</td>
<td>OS-0915</td>
<td>Oceanside</td>
<td>SANDAG</td>
</tr>
<tr>
<td>SD-0660</td>
<td>Swami’s</td>
<td>Encinitas</td>
<td>OS-0930</td>
<td>Buccaneer Bch</td>
<td>SANDAG</td>
</tr>
<tr>
<td>SD-0670</td>
<td>Moonlight Beach</td>
<td>SANDAG</td>
<td>OS-1000</td>
<td>Oceanside</td>
<td>SANDAG</td>
</tr>
<tr>
<td>SD-0675</td>
<td>Stone Steps</td>
<td>SANDAG</td>
<td>OS-1030</td>
<td>Oceanside</td>
<td>SANDAG</td>
</tr>
<tr>
<td>SD-0680</td>
<td>Beacons</td>
<td>SANDAG</td>
<td>OS-1070</td>
<td>Oceanside</td>
<td>SANDAG</td>
</tr>
</tbody>
</table>

Notes:

(1) Transect crosses RBSP nourishment site (red type).
(2) Transect established to support RBSP in 2001.
(3) Transect used for monthly beach width measurements.
(4) Transect added to monitoring program in 2002.
(5) Transect locations shown in Figures 10a and 10b.
Figure 10a. Beach Profile Transects in the Silver Strand and Mission Beach Littoral Cells
Figure 10b. Beach Profile Transects and Lagoons Entrances in the Oceanside Littoral Cell
The Spring 2004 beach survey activities were conducted in the Silver Strand and Mission Beach Littoral Cells on May 5 and 6, respectively. Survey activities then were suspended in anticipation of a south swell event. The survey resumed in the Oceanside Cell on May 17 and concluded on May 19. Despite the interruption of data acquisition due to the swell event, the Spring profile data were acquired under favorable conditions that typically included light winds and seas less than 4 ft.

The Fall 2004 beach profiling activities were conducted over the eight-day period that began on October 6 and ended on October 13. The Fall profile data were acquired under favorable conditions that typically included light winds and seas less than 3 ft.

The data acquisition and processing methods used for the 2004 profile surveys are described below. The methods remained similar to those employed in previous SANDAG and city monitoring programs (Leidersdorf, et al., 1999). In consequence, the results are directly comparable.

Data Acquisition

The wading and bathymetric portions of the survey were performed concurrently by two crews. Data were acquired along each transect from the survey marker to an offshore limit that ranged from the 35-ft isobath in the Silver Strand Cell to the 50-ft isobath in the northern portion of the Oceanside Cell. Each survey marker was located at the back beach, while each offshore limit was located seaward of the “depth of closure” indicated by prior survey data. (The depth of closure is the depth at which sediment transport is not substantially affected by littoral processes.)

The beach and surf zone were surveyed using an electronic total station and a survey rod. The total station was used to determine the position and elevation of the beach at each location occupied by the rod. Each transect was surveyed from the back beach seaward through the surf zone until the rod no longer protruded above the water surface when held erect. This location, typically in a water depth of 10 to 12 ft below MLLW, provided substantial overlap with the landward portion of the bathymetric survey.

Bathymetric data were acquired with a digital acoustic echo sounder operated from a shallow-draft inflatable survey vessel. To improve the resolution of the sonar system, particularly in areas of localized vertical relief, two additional devices first introduced in 2002 were used again in 2004: (1) a dynamic motion sensor to provide real-time corrections for vessel heave, and (2) a ruggedized field computer to log sounding and position data. The
position data were acquired with a GPS unit receiving real-time corrections (DGPS) broadcast from the U.S. Coast Guard Station on Point Loma.

At each transect, the boat traveled from the offshore limit to the surf zone guided by DGPS navigation. Soundings were acquired on a near-continuous basis (approximately three per second). Vessel positions were recorded at 1-second intervals and merged with the soundings using Hypack bathymetric survey software. The calibration of the echo sounder was checked at the beginning and end of each survey session, and at periodic intervals during each session, using a standard “bar check” procedure. In addition, a recording conductivity-temperature-depth (CTD) instrument was used to measure the speed of sound in sea water.

Data Processing

The data from the wading portion of each survey were processed using software developed by Spectra Precision Software Corporation. The raw total station data were read by the software, and the coordinates and elevation of each data point were calculated and inserted into a CAD drawing.

The raw data from the bathymetric portion of each survey consisted of Hypack files containing the heave-compensated soundings and corresponding positions. These data were edited for outliers using the Hypack Single-Beam Processing Module. The soundings then were examined to confirm that the motion compensator had properly filtered wave contamination from the soundings. In several cases where the vessel heave had exceeded the operating range of the motion compensator, the measured depths were smoothed to minimize the influence of wave contamination.

Corrections for the draft of the transducer and the measured speed of sound in sea water then were applied to the measured depths. The speed-of-sound profiles were confirmed using the results of the “bar check” calibration procedure. Finally, the corrected soundings were adjusted to MLLW datum using water level measurements made by the U.S. Department of Commerce, NOAA, at La Jolla.

The adjusted soundings were thinned to a nominal interval of 10 ft to produce a manageable file size suitable for developing beach profile plots. The resulting x, y, z data (easting, northing, and elevation) were inserted into the CAD drawing containing the wading data. As indicated above, the field work was conducted in such a manner as to provide substantial overlap between the wading and bathymetric portions of the survey. The processed data were examined in this region to insure that the two data sets were
compatible. Once this confirmatory inspection had been completed, only the more detailed data in the region of overlap were retained (typically the bathymetric data). The soundings then were projected onto the transect alignment, and the resulting range and elevation data were used to create a continuous beach profile plot.

Based on past experience, the vertical accuracy of the processed soundings is approximately ±0.5 ft. According to the GPS equipment specifications, the root mean square (RMS) accuracy of horizontal positions obtained in the manner described above is 3.1 ft. The electronic total station used to conduct the survey is capable of measuring elevation differences to within ±0.1 ft and ranges to within ±0.5 ft. However, because the swimmer was subjected to waves and currents in the surf zone, the horizontal accuracy perpendicular to each transect (parallel to the shoreline) varied from minimal at short ranges to approximately ±15 ft at the offshore end.

3.1.2. Semi-Annual Aerial Photography

To augment the beach profile data, oblique aerial photographs of the twelve RBSP receiver sites were acquired at approximately the same time as the Spring and Fall surveys. The photographs were taken from a fixed-wing aircraft circling each site at altitudes of 500 to 700 ft.

The Spring photos were obtained on April 30, one week prior to the start of the beach profile survey activities. The Fall photo mission was conducted on October 25, eight days following the completion of the beach profile survey activities.

3.1.3. Monthly Beach Width Measurements

Monthly beach width measurements were initiated by the cities of Carlsbad, Encinitas, San Diego, and Imperial Beach in 2001 to provide supplemental information on the condition of the RBSP fill material at the North Carlsbad, Leucadia, Mission Beach, and Imperial Beach receiver sites. The measurements were made by city personnel at five beach profile transects associated with each of the North Carlsbad, Mission Beach, and Imperial Beach fills, and at six transects associated with the Leucadia fill (a total of 21 transects, each of which is identified in Table 10). Data acquisition commenced on May 31, 2001 at Imperial Beach, June 1, 2001 at Mission Beach and North Carlsbad, and July 13, 2001 at Leucadia.

Prior to the start of the measurement program, the individuals involved were provided with equipment, training, written instructions, and forms for data acquisition. The
instructions specify that data are to be obtained monthly, at a time when the predicted tide height is 1 to 3 ft above MLLW. The beach width is to be measured from a permanent marker on the back beach to the estimated intersection of the still water level and the beach face. In addition, the foreshore slope is to be measured just above the still water level and recorded along with the date and time of the observation.

As in 2001, 2002, and 2003, the beach width data for Imperial Beach, North Carlsbad, and Leucadia were transmitted to Coastal Frontiers for processing at the end of the 2004 Monitoring Year. In both 2003 and 2004, however, the City of San Diego failed to acquire the corresponding data for Mission Beach. Each measurement was adjusted to approximate the MSL beach width using the corresponding foreshore slope and the still water level recorded at the NOS tide gauge on Scripps Pier. Measurements obtained when the still water level was less than +1 ft (MLLW) were removed from the data set because the mild beach slopes that typically prevail below this elevation produce inaccurate estimates of the MSL beach width.

3.2. Lagoon Entrance Monitoring

The 2004 lagoon entrance monitoring effort was virtually identical to those conducted in 2001, 2002, and 2003, and included semi-annual surveys and oblique aerial photography at the entrances to Agua Hedionda, Batiquitos, San Elijo, San Dieguito, and Los Peñasquitos Lagoons. In addition, the un起来了 entrance channels at San Elijo, San Dieguito, and Los Peñasquitos were inspected and photographed on a monthly basis. The surveys and aerial photography were performed by Coastal Frontiers; the monthly channel inspections were undertaken by SANDAG. Each of the three components is described in a separate subsection below.

3.2.1. Semi-Annual Topographic Surveys

The lagoon entrance surveys were conducted in the Spring and Fall in conjunction with the beach profile data collection activities. The Spring work was performed on May 13, 14, and 19, while the Fall work was performed on October 6, 7, and 8.

In the case of Agua Hedionda and Batiquitos Lagoons, where the entrances are stabilized by jetties, an electronic total station and conventional wading techniques were used to obtain two profiles across each channel. One profile was located at the jetty tips, while the other was located at the seaward edge of the coast road bridge.
At San Elijo, San Dieguito, and Los Peñasquitos Lagoons, which lack stabilizing jetties, the condition of each entrance channel was documented by obtaining topographic data from wading depth in the ocean to the coast road bridge. The study area at Los Peñasquitos Lagoon also includes the region immediately shoreward of the coast road. Particular emphasis was placed on areas perceived either to limit tidal access (“sills”) or to contain shoals. As in the case of the jetty-protected entrance channels, the data were obtained using an electronic total station and conventional wading techniques.

All of the lagoon entrance data were processed in the manner described above for the wading portion of the beach profile surveys.

3.2.2. Semi-Annual Oblique Aerial Photography

Oblique aerial photographs of the five lagoon entrances were obtained in the Spring and Fall, during the same missions used to photograph the RBSP receiver sites (April 30 and October 25). As described in Section 3.1.2, the work was performed from a fixed-wing aircraft that circled each site at altitudes of 500 to 700 ft.

To facilitate the discovery of shoals in the entrance channels, each photo mission was undertaken during a period of low tidal elevations. The water levels ranged from +0.2 to +0.3 ft (MLLW) during the Spring overflight, and +0.9 to +1.5 ft during the Fall overflight.

3.2.3. Monthly Inspections and Photography

Monthly inspections of the entrances to San Elijo, San Dieguito, and Los Peñasquitos Lagoons were added to the SANDAG Monitoring Program in 2001 to provide a greater understanding of the condition of each channel after placement of the RBSP fill material. These inspections continued during the 2002, 2003 and 2004 Monitoring Years. In addition to photographs from repeatable locations, the site visits included notes on whether the channels were open to tidal exchange.
4. MONITORING DATA

This section presents the results of the 2004 Regional Beach Monitoring Program, consisting of direct measurements and computed values. The data derived from the beach component of the program are described in Section 4.1, while those derived from the lagoon entrance component are described in Section 4.2.

4.1. Beach Data

As discussed in Section 3.1, beach data acquisition consisted of semi-annual profile surveys, semi-annual oblique aerial photography, and monthly beach width measurements. The results of these activities are provided in Sections 4.1.1 through 4.1.3.

4.1.1. Beach Profile Data (Appendices A-F)

Table 11 presents the number of transects included in each of the semi-annual surveys conducted by SANDAG and the Cities of Carlsbad, Encinitas, and Solana Beach since the inception of the Regional Beach Monitoring Program in 1996. The 2004 beach profile data were used in conjunction with data from the prior surveys to create profile plots and compute changes in shoreline position, beach width, and sediment volume. Selected historical data acquired prior to the SANDAG Monitoring Program also were utilized. A summary of the historical beach profile data for the San Diego region known to exist in the public domain is provided in Appendix A, while a summary of the recent profile data acquired by SANDAG, Carlsbad, Encinitas, and Solana Beach is provided in Appendix B. To facilitate the identification of changes in beach condition attributable to the RBSP, those transects that cross the RBSP fill sites are identified by red type in Appendix B.

Beach profile plots for the nearshore portion of each transect are provided in Appendix C, while plots for the entire length of each transect are provided in Appendix D. In addition to the Spring and Fall 2004 data, the plots display the profiles from Fall 2003, Fall 2002, Fall 2001, Spring 2001, and Fall 1984 (when available), and the envelope of all profiles obtained during the SANDAG monitoring period that preceded the RBSP (Spring 1996-Spring 2001, to the extent that data are available). Post-Nourishment (as-built) profiles also are included for the transects that cross or adjoin the RBSP fill sites. These data, which are limited to the subaerial portion of the beach, were provided by Noble Consultants based on aerial photography (2002).
Table 11. Number of Transects Included in Each SANDAG Survey

<table>
<thead>
<tr>
<th>Survey</th>
<th>Number of Transects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 1996, Fall 1996</td>
<td>24</td>
</tr>
<tr>
<td>Spring 1997</td>
<td>37</td>
</tr>
<tr>
<td>Fall 1997, Spring 1998, Fall 1998</td>
<td>39</td>
</tr>
<tr>
<td>Spring 1999, Fall 1999, Spring 2000</td>
<td>40</td>
</tr>
<tr>
<td>Fall 2000</td>
<td>45</td>
</tr>
<tr>
<td>Spring 2001, Fall 2001</td>
<td>58</td>
</tr>
<tr>
<td>Spring 2002</td>
<td>60</td>
</tr>
<tr>
<td>Fall 2002 through Fall 2004</td>
<td>61</td>
</tr>
</tbody>
</table>

When reviewing Appendices C and D, it is important to recognize that the pronounced vertical relief evident in Fall 2002 and subsequent profiles resulted from the improved survey resolution (Section 3.1.1) rather than from actual changes in the sea bottom. A representative example is provided in Figure 11, which displays the nearshore portion of the recent profiles obtained on Transect CB-0880 in Carlsbad. The most likely explanation for the “jaggedness” evident in the Fall 2002 and subsequent profiles is the presence of exposed rock reefs (which were not identifiable until the on-board dynamic motion sensor and data acquisition computer were added to the equipment suite in 2002). Although the data obtained in such areas can vary somewhat from survey to survey due to differences in the vessel track and wave conditions, the improved resolution afforded by the new technology is beneficial in identifying potential hard-bottom habitat.

Comparing the Spring and Fall profiles provides an indication of seasonal changes, while comparing the four Fall profiles illustrates the nature of inter-annual and long-term changes. A significant difference between the pre-RBSP envelope and one or more of the post-nourishment profiles indicates a material change in the beach condition that may have resulted from the RBSP nourishment activities.
Tables and plots of shoreline position and beach width derived from the profile data are provided in Appendix E. Data from the following 21 surveys were used to the extent that they were available:

- Pre-1984: Date Varies
- 1984: Fall
- 1989: Fall
- 1996: Spring and Fall
- 1997: Spring and Fall
- 1998: Spring and Fall
- 1999: Spring and Fall
- 2000: Spring and Fall
- 2001: Spring and Fall
- 2002: Spring and Fall
- 2003: Spring and Fall
- 2004: Spring and Fall

Because the survey data acquired prior to 1984 are relatively sparse in both time and space, it was not possible to select a single survey from this period that encompassed more than a small percentage of the transects. Therefore, pre-1984 data for each transect were selected on an individual basis, with preference given to data collected during the Fall. The Fall 1984 and Fall 1989 data were selected for analysis because many of the historical transects were profiled at these times.

The following shoreline and beach width tabulations were prepared:

MSL Shoreline Positions

The shoreline position was computed as the horizontal distance, in feet, between the transect origin (typically a permanent marker located near the back beach) and the point at which the beach profile intersected the plane of MSL Datum. Notwithstanding the use of MLLW as the elevation reference for the profile data, MSL was adopted as the shoreline reference in the belief that it provides a more accurate indicator of changes in beach configuration.

Seasonal Changes in MSL Shoreline Position:

Long-term Changes, Long-term Change Rates, and Annual Changes:

Long-term shoreline changes were calculated for three intervals that preceded the RBSP: pre-1984 to Fall 1984; Fall 1984 to Fall 1989 (5 years); and Fall 1989 to Fall 2000 (11 years). Long-term change rates were calculated by dividing the change in MSL shoreline position by the corresponding time interval. To reflect the seasonal nature of changes in beach configuration, the time interval was computed in one-quarter year increments (Winter, Spring, Summer, and Fall). For example, the time interval between surveys conducted in September 1984 (Fall 1984) and November 1989 (Fall 1989) was taken as 5 years rather than 5.17 years. The change rates are expressed in feet/year, with positive values denoting shoreline advance and negative values denoting retreat. To facilitate comparisons between long- and short-term changes, the long-term changes and change rates are tabulated with the annual changes in shoreline position recorded between Fall 1996 and Fall 2004.

MSL Beach Widths:

Beach width provides an indication of recreational area as well as the protection afforded to upland facilities. The width was computed as the distance between the landward edge of the beach sand and the MSL shoreline position.

Sediment volume changes are tabulated in Appendix F. The volume changes were computed along each transect for the entire width of the shorezone, and for that portion of the profile located above MSL.

In the SANDAG annual monitoring reports prepared prior to 2002, the onshore boundary of the control volume for both the shorezone and the beach above MSL was placed at the origin of each transect. In 2002, however, the boundary was modified for seven sites that contain seacliffs: DM-0565, SD-0650, SD-0710, CB-0740, CB-0775, CB-0780, and CB-0850. At these locations, the onshore boundary was moved from the top of the seacliff to its base to eliminate the inaccuracies introduced by profiling a steep, uneven cliff face. All of the volume changes reported in Appendix F have been adjusted to reflect this change, including those pertaining to the prior Monitoring Years as well as to 2002, 2003, and 2004.

The offshore boundary of the control volume for the beach above MSL was placed at the intersection of the profile and a horizontal line corresponding to the elevation of MSL. The offshore boundary for the shorezone was placed at the “statistical range of closure”.
This parameter represents the distance seaward of the transect origin beyond which profile variations are smaller than the accuracy of the survey technique. As implied by its definition, the statistical range of closure was adopted as the offshore boundary to separate the signal of true profile change from the noise of survey inaccuracy. The sea bottom elevation at the range of closure corresponds to the “depth of closure” described in Section 3.1.1.

The statistical range of closure for each transect was derived prior to preparing the 2001 Annual Monitoring Report (Coastal Frontiers, 2002). As described in that report, the procedure was as follows:

- The successive survey profiles were interpolated to obtain sea bottom elevations at a common set of ranges spaced 15 ft apart.
- The sample standard deviation (σ) of the sea bottom elevations was computed at each 15-ft range increment.
- Statistical closure was assumed to occur at the smallest range at which \(\sigma \) decreased below the survey accuracy of 0.5 ft, provided that the average value of \(\sigma \) remained less than or equal to 0.5 ft seaward of that point. If this condition was not satisfied by the first downcrossing below 0.5 ft, the next downcrossing seaward of that location was checked.
- In determining statistical closure, attention was restricted to depths greater than 12 ft (MLLW) to insure that the berm-bar portion of the profile would be included in the control volume.

To the extent that data were available, the determination of statistical closure was based on the ten semi-annual surveys that commenced in Fall 1997 and ended in Spring 2002. Surveys prior to Fall 1997 were not used, because they tended either to omit a significant number of the current transects, or to terminate landward of the depth of profile closure. The final two surveys, Fall 2001 and Spring 2002, were included in an attempt to define a control volume that would encompass the seaward dispersion of the RBSP fill material. In the case of transects that lacked profile data for the relatively severe El Niño winter of 1997-98, the range of closure was estimated from one or more adjoining transects with similar exposure and beach characteristics. The results are presented in Table 12.

The values shown in Table 12 were used without modification in 2002, 2003 and 2004 to facilitate a direct comparison of annual volume changes in the shorezone. Unless extraordinary events cause substantial profile changes outside the computed ranges of
Table 12. Range and Depth of Closure at Each Profile Location

<table>
<thead>
<tr>
<th>Transect<sup>(2)</sup></th>
<th>Location</th>
<th>Range of Closure<sup>(3)</sup></th>
<th>Depth of Closure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS-0003</td>
<td>Tijuana Estuary</td>
<td>1501</td>
<td>-32</td>
</tr>
<tr>
<td>SS-0005<sup>(5)</sup></td>
<td>Tijuana Estuary</td>
<td>1175</td>
<td>-25</td>
</tr>
<tr>
<td>SS-0007</td>
<td>Tijuana Estuary</td>
<td>1132</td>
<td>-17</td>
</tr>
<tr>
<td>SS-0015</td>
<td>Imperial Beach</td>
<td>1448</td>
<td>-19</td>
</tr>
<tr>
<td>SS-0020<sup>(1,4)</sup></td>
<td>Imperial Beach</td>
<td>1463</td>
<td>-22</td>
</tr>
<tr>
<td>SS-0025<sup>(1,4)</sup></td>
<td>Imperial Beach</td>
<td>2064</td>
<td>-27</td>
</tr>
<tr>
<td>SS-0035</td>
<td>Imperial Beach</td>
<td>2260</td>
<td>-29</td>
</tr>
<tr>
<td>SS-0050<sup>(4)</sup></td>
<td>Imperial Beach</td>
<td>2445</td>
<td>-30</td>
</tr>
<tr>
<td>SS-0077</td>
<td>Silver Strand</td>
<td>1893</td>
<td>-30</td>
</tr>
<tr>
<td>SS-0090</td>
<td>Silver Strand</td>
<td>1499</td>
<td>-29</td>
</tr>
<tr>
<td>SS-0160</td>
<td>Coronado</td>
<td>2109</td>
<td>-25</td>
</tr>
<tr>
<td>OB-0230</td>
<td>Ocean Beach</td>
<td>2249</td>
<td>-23</td>
</tr>
<tr>
<td>MB-0310</td>
<td>Mission Beach</td>
<td>1460</td>
<td>-24</td>
</tr>
<tr>
<td>MB-0320<sup>(4)</sup></td>
<td>Mission Beach</td>
<td>1785</td>
<td>-29</td>
</tr>
<tr>
<td>MB-0335<sup>(1,4)</sup></td>
<td>Mission Beach</td>
<td>1740</td>
<td>-29</td>
</tr>
<tr>
<td>MB-0340<sup>(1)</sup></td>
<td>Mission Beach</td>
<td>1687</td>
<td>-29</td>
</tr>
<tr>
<td>MB-0384</td>
<td>Mission Beach</td>
<td>1764</td>
<td>-27</td>
</tr>
<tr>
<td>PB-0408</td>
<td>Pacific Beach</td>
<td>1074</td>
<td>-14</td>
</tr>
<tr>
<td>LJ-0443</td>
<td>La Jolla Shores</td>
<td>1038</td>
<td>-13</td>
</tr>
<tr>
<td>LJ-0445</td>
<td>La Jolla</td>
<td>802</td>
<td>-13</td>
</tr>
<tr>
<td>LJ-0450</td>
<td>La Jolla</td>
<td>1195</td>
<td>-17</td>
</tr>
<tr>
<td>LJ-0460</td>
<td>Scripps</td>
<td>1047</td>
<td>-19</td>
</tr>
<tr>
<td>TP-0470</td>
<td>Blacks Beach</td>
<td>1573</td>
<td>-29</td>
</tr>
<tr>
<td>TP-0520<sup>(1)</sup></td>
<td>Torrey Pines</td>
<td>1398</td>
<td>-26</td>
</tr>
<tr>
<td>TP-0530<sup>(1)</sup></td>
<td>Torrey Pines</td>
<td>1464</td>
<td>-25</td>
</tr>
<tr>
<td>DM-0565<sup>(4)</sup></td>
<td>Del Mar</td>
<td>1770</td>
<td>-25</td>
</tr>
<tr>
<td>DM-0560<sup>(5)</sup></td>
<td>Del Mar</td>
<td>1800</td>
<td>-29</td>
</tr>
<tr>
<td>DM-0580<sup>(1)</sup></td>
<td>Del Mar</td>
<td>1899</td>
<td>-29</td>
</tr>
<tr>
<td>DM-0590</td>
<td>San Dieguito</td>
<td>1146</td>
<td>-16</td>
</tr>
<tr>
<td>SD-0595<sup>(4)</sup></td>
<td>Seascapes Surf</td>
<td>1072</td>
<td>-13</td>
</tr>
<tr>
<td>SD-0600<sup>(1)</sup></td>
<td>Solana Beach</td>
<td>910</td>
<td>-13</td>
</tr>
<tr>
<td>SD-0610<sup>(4)</sup></td>
<td>Tide Park</td>
<td>838</td>
<td>-13</td>
</tr>
<tr>
<td>SD-0620<sup>(4)</sup></td>
<td>Seaside Park</td>
<td>1935</td>
<td>-30</td>
</tr>
</tbody>
</table>

(continued)
Table 12. Range and Depth of Closure at Each Profile Location (continued)

<table>
<thead>
<tr>
<th>Transect(2)</th>
<th>Location</th>
<th>Range of Closure(3)</th>
<th>Depth of Closure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-0625(1,4)</td>
<td>San Elijo Lagoon</td>
<td>1800</td>
<td>-30</td>
</tr>
<tr>
<td>SD-0630(1)</td>
<td>Cardiff</td>
<td>1808</td>
<td>-30</td>
</tr>
<tr>
<td>SD-0650(4)</td>
<td>San Elijo St. Bch</td>
<td>1590</td>
<td>-30</td>
</tr>
<tr>
<td>SD-0660(4)</td>
<td>Swami's</td>
<td>1650</td>
<td>-30</td>
</tr>
<tr>
<td>SD-0670(1)</td>
<td>Moonlight Bch.</td>
<td>1639</td>
<td>-29</td>
</tr>
<tr>
<td>SD-0675(4)</td>
<td>Stone Steps</td>
<td>1230</td>
<td>-21</td>
</tr>
<tr>
<td>SD-0680(4)</td>
<td>Leucadia</td>
<td>1357</td>
<td>-21</td>
</tr>
<tr>
<td>SD-0690(1,4)</td>
<td>Leucadia</td>
<td>1470</td>
<td>-27</td>
</tr>
<tr>
<td>SD-0695(4)</td>
<td>Leucadia</td>
<td>1500</td>
<td>-27</td>
</tr>
<tr>
<td>SD-0700(4)</td>
<td>Grandview</td>
<td>1515</td>
<td>-27</td>
</tr>
<tr>
<td>SD-0710(1,4)</td>
<td>Leucadia</td>
<td>1485</td>
<td>-27</td>
</tr>
<tr>
<td>CB-0720</td>
<td>Batiquitos</td>
<td>1556</td>
<td>-27</td>
</tr>
<tr>
<td>CB-0740</td>
<td>S. Carlsbad</td>
<td>1264</td>
<td>-18</td>
</tr>
<tr>
<td>CB-0760</td>
<td>Ponto Beach</td>
<td>1322</td>
<td>-24</td>
</tr>
<tr>
<td>CB-0775(1,4)</td>
<td>South Carlsbad</td>
<td>1500</td>
<td>-25</td>
</tr>
<tr>
<td>CB-0780</td>
<td>Carlsbad</td>
<td>1527</td>
<td>-25</td>
</tr>
<tr>
<td>CB-0800</td>
<td>Carlsbad</td>
<td>1026</td>
<td>-13</td>
</tr>
<tr>
<td>CB-0820</td>
<td>Agua Hedionda</td>
<td>1270</td>
<td>-22</td>
</tr>
<tr>
<td>CB-0830</td>
<td>Carlsbad</td>
<td>1134</td>
<td>-21</td>
</tr>
<tr>
<td>CB-0840</td>
<td>Carlsbad</td>
<td>984</td>
<td>-17</td>
</tr>
<tr>
<td>CB-0850</td>
<td>Carlsbad</td>
<td>947</td>
<td>-14</td>
</tr>
<tr>
<td>CB-0865(1,4)</td>
<td>Carlsbad</td>
<td>1105</td>
<td>-16</td>
</tr>
<tr>
<td>CB-0880(1)</td>
<td>Buena Vista</td>
<td>1030</td>
<td>-16</td>
</tr>
<tr>
<td>OS-0900</td>
<td>S. Oceanside</td>
<td>1317</td>
<td>-26</td>
</tr>
<tr>
<td>OS-0915(1,4)</td>
<td>Oceanside</td>
<td>1230</td>
<td>-26</td>
</tr>
<tr>
<td>OS-0930(1)</td>
<td>Buccaneer</td>
<td>1313</td>
<td>-24</td>
</tr>
<tr>
<td>OS-1000</td>
<td>Oceanside</td>
<td>1082</td>
<td>-19</td>
</tr>
<tr>
<td>OS-1030</td>
<td>Oceanside</td>
<td>1247</td>
<td>-21</td>
</tr>
<tr>
<td>OS-1070</td>
<td>Oceanside</td>
<td>1455</td>
<td>-17</td>
</tr>
</tbody>
</table>

Notes:
(1) Transect crosses RBSP nourishment site (shown in red type).
(2) Transect locations are indicated in Figures 10a and 10b.
(3) Range of closure measured from transect origin, and based on Fall 1997 through Spring 2002 Survey data unless otherwise noted.
(4) Range of closure estimated from nearby transects due to insufficient data.
closure, these values will serve as the basis for all shorezone volume computations throughout the period in which the fate of the RBSP fills remains under investigation. In the case of transects added since the inception of the RBSP Monitoring Period (such as SS-0005 and DM-0560), the range of closure was estimated based on nearby transects in the manner described above.

For each survey at each transect, the shorezone volume per linear foot of shoreline (cy/ft) was calculated as the area under the profile to an arbitrary basement elevation of –60 ft. Volume changes then were computed for the following 23 periods:

Winter:
- Fall 1997 to Spring 1998
- Fall 1998 to Spring 1999
- Fall 1999 to Spring 2000
- Fall 2000 to Spring 2001
- Fall 2001 to Spring 2002
- Fall 2002 to Spring 2003
- Fall 2003 to Spring 2004

Summer:
- Spring 1998 to Fall 1998
- Spring 1999 to Fall 1999
- Spring 2000 to Fall 2000
- Spring 2001 to Fall 2001
- Spring 2002 to Fall 2002
- Spring 2003 to Fall 2003
- Spring 2004 to Fall 2004

Annual:
- Fall 1997 to Fall 1998
- Fall 1998 to Fall 1999
- Fall 1999 to Fall 2000
- Fall 2000 to Fall 2001
- Fall 2001 to Fall 2002
- Fall 2002 to Fall 2003
- Fall 2003 to Fall 2004

Long-term:
- Fall 1997 to Fall 2000 (Pre-RBSP)
- Fall 2000 to Fall 2004 (RBSP)

The beach volume above MSL, like the beach width, provides an indication of the recreational area and the protection afforded to upland facilities. Changes in beach volume above MSL were developed for the same 23 periods as changes in shorezone volume.

4.1.2. Aerial Photographs (Section 5)

Representative aerial photographs obtained at the twelve RBSP receiver sites between 2001 and 2004 are provided in Section 5. A more extensive set of aerial photographs covering the twelve sites was provided to SANDAG in digital form following each overflight.
4.1.3. Beach Width Measurements (Appendix G)

The monthly beach width data obtained by the Cities of Carlsbad, Encinitas, San Diego, and Imperial Beach are presented as time-series plots in Appendix G. As indicated in Section 3.1.3, the measurements were adjusted to approximate the MSL beach width using the corresponding water levels and beach slopes. The MSL beach widths obtained from the 2001, 2002, 2003, and 2004 profile data, which are inherently more accurate than the monthly measurements, also are shown on the plots in Appendix G.

4.2. Lagoon Entrance Data

Lagoon entrance data acquisition consisted of semi-annual surveys and oblique aerial photography at all five entrances, and monthly observations and photographs at the unstabilized entrances to San Elijo, San Dieguito, and Los Peñasquitos.

4.2.1. Topographic Data (Appendix H)

The 2004 lagoon entrance monitoring data are presented in graphical form in Appendix H. For Agua Hedionda and Batiquitos, all channel cross-sections obtained since Fall 2000 are displayed with those from Spring and Fall 2004 to illustrate the changes in configuration.

For each of the three unstabilized entrances (San Elijo, San Dieguito, and Los Peñasquitos), the following six contour maps were prepared to illustrate changes in the condition of the channel:

- A contour map depicting the topographic data obtained in Fall 2003;
- A contour map depicting the topographic data obtained in Spring 2004;
- A contour map depicting the topographic data obtained in Fall 2004;
- A contour map illustrating the elevation changes that occurred between Fall 2003 and Spring 2004, as well as the net change in volume within the survey area;
- A contour map illustrating the elevation changes that occurred between Spring 2004 and Fall 2004, as well as the net change in volume within the survey area;
- A contour map illustrating the elevation changes that occurred between Fall 2003 and Fall 2004, as well as the net change in volume within the survey area.
4.2.2. Aerial Photographs (Section 6)

Representative aerial photographs obtained at the five lagoon entrances between 2001 and 2004 are provided in Section 6. A more extensive set of aerial photographs covering the five sites was provided to SANDAG in digital form following each overflight.

4.2.3. Inspection Results (Appendix I)

Selected ground photographs obtained by SANDAG on a monthly basis at the entrances to San Elijo, San Dieguito, and Los Peñasquitos Lagoons are provided in Appendix I.
5. BEACH CONDITION

Based on the data presented in Sections 2 and 4, this chapter assesses the condition of San Diego County’s beaches during the 2004 Monitoring Year (November 2003 through October 2004), and the entire RBSP Monitoring Period (November 2000 through October 2004). Section 5.1 provides a regional overview, while Section 5.2 describes the performance of each of the twelve RBSP beach fills. To insure that the findings are directly comparable, all of the statistical characterizations of shoreline and volume changes are derived from the 44 transects with measurements dating back to Fall 2000 (i.e., predating the RBSP Monitoring Period).

5.1. Regional Overview

During the 2004 Monitoring Year, the volume of sediment in the San Diego County shorezone did not change appreciably, with volume gains and losses nearly balanced among the survey transects. In contrast, the trend toward shoreline retreat identified in 2003 persisted. The apparent paradox created by a stable shorezone volume and a retreating shoreline may be explained by the fact that sediment moved from the subaerial portion of the profile to the submerged portion, but remained within the shorezone. The predominance of shoreline retreat is attributable to three factors: (1) offshore dispersal of the RBSP fill material, (2) a lack of significant sediment input from rivers and streams, and (3) a lack of beach nourishment activities. The stability of the shorezone sediment volume is consistent with the fact that, in the absence of nourishment activities, major rainstorms, and severe storm events, significant quantities of material were neither added to nor removed from the coast.

Notwithstanding the shoreline retreat that occurred in 2003 and 2004, the beaches in the Oceanside and Mission Beach Littoral Cells were in substantially better condition at the end of the four-year RBSP Monitoring Period than at the beginning. Beach width and sediment volume both tended to increase over this period, with the greatest shoreline advance occurring in the Mission Beach Cell and the greatest shorezone volume gains occurring in the Oceanside Cell. The primary reasons for this general improvement in the state of the coast appear to have been the RBSP beach fills, and the relatively mild wave conditions that prevailed throughout the period.

In the Silver Strand Cell, beach width changes were mixed during the RBSP Monitoring Period but sediment volumes decreased. The volume losses in this cell may be
explained by the absence of non-RBSP nourishment activities during the period, which produced a net deficit relative to the historical average nourishment rate (Section 2.3).

5.1.1. Shoreline and Subaerial Volume Changes

The changes in MSL shoreline position that occurred during the 2004 Monitoring Year and the entire RBSP Monitoring Period are summarized in Figures 12a and b and Table 13. Detailed supporting data appear in Appendix E.

Figure 12a. MSL Shoreline Changes during the 2004 Monitoring Year and RBSP Monitoring Period in the Silver Strand and Mission Beach Littoral Cells
Figure 12b. MSL Shoreline Changes during the 2004 Monitoring Year and RBSP Monitoring Period in the Oceanside Littoral Cell
Table 13. MSL Shoreline Changes during the 2004 Monitoring Year and RBSP Monitoring Period (1)

<table>
<thead>
<tr>
<th>Littoral Cell</th>
<th>MSL Shoreline Change (no. of transects)</th>
<th>Average Change (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Advance</td>
<td>No Change (2)</td>
</tr>
<tr>
<td>Silver Strand Cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 Mon. Year</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>RBSP Mon. Period(3)</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Mission Beach Cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 Mon. Year</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>RBSP Mon. Period(3)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Oceanside Cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 Mon. Year</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>RBSP Mon. Period(3)</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>All Cells Combined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 Mon. Year</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>RBSP Mon. Period(3)</td>
<td>20</td>
<td>11</td>
</tr>
</tbody>
</table>

Note: (1) Shoreline change statistics are derived from the 44 transects with measurements dating back to Fall 2000.
(2) “No Change” indicates a shoreline change of 10 ft or less.
(3) RBSP Monitoring Period extends from November 2000 through October 2004.

As indicated above, shoreline advance predominated during the RBSP Monitoring Period despite a reversal of this trend during the two most recent monitoring years. When the three littoral cells are considered together, the breakdown of shoreline changes during the four-year RBSP Monitoring Period is as follows:

- 20 transects (45%) exhibited shoreline advance in excess of 10 ft;
- 11 transects (25%) exhibited essentially no shoreline change (10 ft or less);
- 13 transects (30%) exhibited shoreline retreat in excess of 10 ft.

The average shoreline change during this period was an advance of 8 ft. This value reflects a 4-ft average advance for the six transects in the Silver Strand Cell, a 20-ft average advance for the five transects in the Mission Beach Cell, and a 6-ft average advance for the 33 transects in the Oceanside Cell.
Time series of the average shoreline change at the time of the Fall Survey relative to the pre-RBSP condition (Fall 2000) are presented for each littoral cell and the entire region in Figure 13. Substantial shoreline advance occurred in 2001 for each cell in response to the RBSP. In the Oceanside Cell, additional gains were realized in 2002 as the RBSP fill material dispersed alongshore. Shoreline retreat then followed in 2003 and 2004, suggesting ongoing dispersal of the fill material from the subaerial beach. A similar pattern is absent in the Mission Beach and Silver Strand Cells, perhaps due to the relatively small nourishment quantities and the use of only one receiver site in each of these cells. The shoreline gain was short-lived in the Silver Strand Cell, but has persisted in the Mission Beach Cell.

![Figure 13. Time Series of Average MSL Shoreline Change Relative to Pre-RBSP Condition](image)

Figures 14a, b, and c present time series of the changes in subaerial sediment volume (above MSL) that occurred between Fall 1997 and Fall 2004. In the case of the 44 transects that pre-dated the RBSP Monitoring Period, the changes were reckoned from the volumes that prevailed at the beginning of that period (Fall 2000). Hence, if the volume change in Fall 2004 exceeds zero, the subaerial volume has increased during the RBSP Monitoring Period. In the case of the 17 transects that were added to the monitoring program after Fall 2000, the changes were reckoned from the volumes that prevailed at the time of the initial survey.
Figure 14a. Time Series of Subaerial Volume Change in the Silver Strand Littoral Cell

Note: Bar representing RBSP fill is schematic only, and not drawn to scale.
Figure 14b. Time Series of Subaerial Volume Change in the Mission Beach Littoral Cell

Note: Bar representing RBSP fill is schematic only, and not drawn to scale.
Note: Bar representing RBSP fill is schematic only, and not drawn to scale.

Figure 14c. Time Series of Subaerial Volume Change in the Oceanside Littoral Cell (page 1 of 4)
Note: Bar representing RBSP fill is schematic only, and not drawn to scale.

Figure 14c. Time Series of Subaerial Volume Change in the Oceanside Littoral Cell (page 2 of 4)
Note: Bar representing RBSP fill is schematic only, and not drawn to scale.

Figure 14c. Time Series of Subaerial Volume Change in the Oceanside Littoral Cell (page 3 of 4)
Note: Bar representing RBSP fill is schematic only, and not drawn to scale.

Figure 14c. Time Series of Subaerial Volume Change in the Oceanside Littoral Cell (page 4 of 4)
Noteworthy aspects of the time series plots are summarized below:

- A strong seasonal signal is evident on most of the transects, with the subaerial volume increasing during the summer months and decreasing during the winter months. This trend is consistent with the anticipated seasonal oscillation in the direction of cross-shore transport: onshore in summer and offshore in winter.

- A significant increase in subaerial volume occurred at the time of fill placement at all RBSP receiver sites except Del Mar. In some cases, such as Fletcher Cove, the gain was quickly reversed; in others, such as Oceanside, North Carlsbad and Mission Beach, the subaerial volume at the time of the Fall 2004 survey remained well above that which preceded the nourishment program.

5.1.2. Beach Widths

In Figures 15a and b, the MSL beach widths measured in Spring 2004 and Fall 2004 are compared with the envelope of widths measured prior to the RBSP (Spring 1996-Spring 2001 or Spring 1997-Spring 2001, to the extent that data are available). At more than 25% of the transects with measurements dating back to 1997 (11 of 38 transects), the beach width in Fall 2004 exceeded that noted in any of the pre-RBSP years. The largest increase relative to the pre-RBSP envelope, 58 ft, occurred in Cardiff on Transect SD-0630. At only one location, the beach width in Spring 2004 fell below the pre-RBSP envelope: a 46-ft shortfall at Transect OS-1070, located in Oceanside.

5.1.3. Shorezone Volume Changes

Figures 16a and b and Table 14 present the volume changes that occurred in the shorezone (inside the range of closure) during the 2004 Monitoring Year and the entire RBSP Monitoring Period. The supporting data are provided in Appendix F.

During the 2004 Monitoring Year, gains and losses in shorezone volume were equally balanced among the 44 transects that pre-dated the RBSP Monitoring Period. The net result was an average loss of 1 cy/ft in the Silver Strand Cell and an average gain of 1 cy/ft in each of the Mission Beach and Oceanside Cells. This finding is not surprising considering that in the absence of nourishment activities, major rainstorms, and severe storm events, significant quantities of material were neither added to nor removed from the shorezone.
Figure 15a. Comparison of 2004 MSL Beach Widths with Pre-RBSP Envelope in the Silver Strand and Mission Beach Littoral Cells
Figure 15b. Comparison of 2004 MSL Beach Widths with Pre-RBSP Envelope in the Oceanside Littoral Cell
Figure 16a. Shorezone Volume Changes during the 2004 Monitoring Year and RBSP Monitoring Period in the Silver Strand and Mission Beach Littoral Cells
Figure 16b. Shorezone Volume Changes during the 2004 Monitoring Year and RBSP Monitoring Period in the Oceanside Littoral Cell
Table 14. Shorezone Volume Changes during the 2004 Monitoring Year and RBSP Monitoring Period(1)

<table>
<thead>
<tr>
<th>Littoral Cell</th>
<th>Shorezone Volume Change (no. of transects)</th>
<th>Average Change (cy/ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increase</td>
<td>No Change (2)</td>
</tr>
<tr>
<td>Silver Strand Cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 Mon. Year</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>RBSP Mon. Period(3)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Mission Beach Cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 Mon. Year</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>RBSP Mon. Period(3)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Oceanside Cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 Mon. Year</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>RBSP Mon. Period(3)</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>All Cells Combined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004 Mon. Year</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>RBSP Mon. Period(3)</td>
<td>25</td>
<td>11</td>
</tr>
</tbody>
</table>

Note:
(1) Volume change statistics are derived from the 44 transects with measurements dating back to Fall 2000.
(2) “No Change” indicates a volume change of 10 cy/ft or less.
(3) RBSP Monitoring Period extends from November 2000 through October 2004.

This lack of change during the past year contrasts with the net increase in shorezone volume that occurred over the entire RBSP Monitoring Period. When the three littoral cells are considered together, the breakdown of volume changes during the four-year period is as follows:

- 25 transects (57%) exhibited gains in excess of 10 cy/ft;
- 11 transects (25%) exhibited essentially no change (10 cy/ft or less);
- 8 transects (18%) exhibited losses in excess of 10 cy/ft.

The average change in shorezone volume during this period was a gain of 16 cy/ft, reflecting average gains of 21 cy/ft in the Oceanside Cell and 11 cy/ft in the Mission Beach Cell along with a loss of 9 cy/ft in the Silver Strand Cell. The disparate results in the three cells may be explained, at least in part, by the average annual nourishment rates presented in Table 8. Whereas the nourishment rates in the Oceanside and Mission Beach Cells during the RBSP Monitoring Period exceeded the pre-RBSP rates by 66,000 and 36,000 cy/yr, respectively, the RBSP rate in the Silver Strand Cell was 43,000 cy/yr less than the pre-
RBSP rate. As explained in Section 2, this deficit in the Silver Strand Cell arose from the cessation of all nourishment activities other than the RBSP.

Time series of the average shorezone volume change at the time of the Fall Survey relative to the pre-RBSP condition (Fall 2000) are presented for each littoral cell and the entire region in Figure 17. The sediment volume gains that occurred in the Oceanside and Mission Beach Cells following the RBSP persisted with minimal change through 2004. In the Silver Strand Cell, shorezone volumes decreased following the RBSP, and never exceeded the 2000 condition. Although unexpected, this finding may reflect the fact that the two transects located within the Imperial Beach fill do not pre-date the RBSP Monitoring Period. Hence the volume changes at these transects were not included in the statistics. In addition, the 120,000 cy RBSP fill was only modestly larger than the average historical nourishment rate of 73,000 cy/yr (Table 8).

![Figure 17. Time Series of Average MSL Shorezone Volume Change Relative to Pre-RBSP Condition](image)

Figures 18a, b, and c present time series of the changes in shorezone sediment volume that occurred between Fall 1997 and Fall 2004. As in the case of Figures 13a, b, and c, the changes were reckoned from the volumes that prevailed at the beginning of the
Note: Bar representing RBSP fill is schematic only, and not drawn to scale.

Figure 18a. Time Series of Shorezone Volume Change in the Silver Strand Littoral Cell
Figure 18b. Time Series of Shorezone Volume Change in the Mission Beach Littoral Cell

Note: Bar representing RBSP fill is schematic only, and not drawn to scale.
Oceanside Littoral Cell - La Jolla to Del Mar

Note: Bar representing RBSP fill is schematic only, and not drawn to scale.

Figure 18c. Time Series of Shorezone Volume Change in the Oceanside Littoral Cell (page 1 of 4)
Figure 18c. Time Series of Shorezone Volume Change in the Oceanside Littoral Cell (page 2 of 4)

Note: Bar representing RBSP fill is schematic only, and not drawn to scale.
Oceanside Littoral Cell - Leucadia to Carlsbad

Date

Shorezone Volume Change (cy/ft)

CB-0820
CB-0800
CB-0780
CB-0775
CB-0760
CB-0740
CB-0720
SD-0710
SD-0700
SD-0695
SD-0690

note: Bar representing RBSP fill is schematic only, and not drawn to scale.

Figure 18c. Time Series of Shorezone Volume Change in the Oceanside Littoral Cell (page 3 of 4)
Oceanside Littoral Cell - Carlsbad to Oceanside Harbor

Note: Bar representing RBSP fill is schematic only, and not drawn to scale.

Figure 18c. Time Series of Shorezone Volume Change in the Oceanside Littoral Cell (page 4 of 4)
RBSP Monitoring Period (Fall 2000) whenever possible, or from the volumes that prevailed at the time of the initial survey for transects first profiled after Fall 2000. Key points are summarized below:

- A significant increase in shorezone volume occurred at the time of fill placement at each of the twelve RBSP receiver sites. At some of these beaches, such as Del Mar, Moonlight, and South Carlsbad, the gains were short-lived. At others, such as Mission Beach and Oceanside, the gains persisted through the time of the Fall 2004 survey.

- Shorezone volume gains occurred at many of the beaches adjacent to the receiver sites, reflecting lateral dispersal of the fill material. Representative examples include Transects SD-0625 and SD-0620, which are located adjacent to the Cardiff fill, and Transect SD-0680, which is located adjacent to the Leucadia fill.

- The positive impact of the RBSP fill material is most evident in the Oceanside-North Carlsbad area, where prolonged volume gains were recorded on the nine consecutive transects bounded by OS-1000 and CB-0830. These gains suggest that the Oceanside and North Carlsbad fills coalesced and dispersed laterally along a stretch of coast that extends for more than two miles.

5.2. RBSP Beach Fill Performance

The subsections that follow assess the performance of each of the twelve RBSP beach fills. The locations of the fills, along with those of all beach profile transects in the vicinity, are shown in Figures 19 through 24.

Table 15 provides the MSL shoreline change and shorezone volume change that occurred between Spring 2001 and Fall 2004 on an indicator transect selected to characterize each fill site. In those instances where more than one transect crossed the fill, the transect that received the greatest nourishment (as indicated by the Post-Nourishment profile) was adopted as the indicator. To provide a reference against which individual fill performance can be measured, the table includes the average, maximum, and minimum values of each parameter.

It should be noted that the MSL shoreline changes in Table 15 reflect not only the effects of the nourishment program, but also a seasonal bias introduced by comparing shoreline positions from Spring (2001) and Fall (2004). Because the shoreline tends to
Figure 19. Location Map for Imperial Beach Receiver Site
Figure 20. Location Map for Mission Beach Receiver Site
Figure 21. Location Map for Torrey Pines Receiver Site
Figure 22. Location Map for Del Mar, Fletcher Cove, and Cardiff Receiver Sites
Figure 23. Location Map for Moonlight Beach, Leucadia, Batiquitos, and South Carlsbad Receiver Sites
Figure 24. Location Map for North Carlsbad and Oceanside Receiver Sites
Table 15. RBSP Beach Fill Performance

<table>
<thead>
<tr>
<th>Receiver Beach</th>
<th>Indicator Transect</th>
<th>MSL Shoreline Change, Spring 01–Fall 04 (ft)</th>
<th>Shorezone Volume Change, Spring 01–Fall 04 (cy/ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial Beach</td>
<td>SS-0025</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>Mission Beach</td>
<td>MB-0340</td>
<td>110</td>
<td>18</td>
</tr>
<tr>
<td>Torrey Pines</td>
<td>TP-0520</td>
<td>73</td>
<td>-5</td>
</tr>
<tr>
<td>Del Mar</td>
<td>DM-0580</td>
<td>80</td>
<td>29</td>
</tr>
<tr>
<td>Fletcher Cove</td>
<td>SD-0600</td>
<td>43</td>
<td>18</td>
</tr>
<tr>
<td>Cardiff</td>
<td>SD-0630</td>
<td>104</td>
<td>76</td>
</tr>
<tr>
<td>Moonlight Beach</td>
<td>SD-0670</td>
<td>97</td>
<td>-20</td>
</tr>
<tr>
<td>Leucadia</td>
<td>SD-0690</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>Batiquitos</td>
<td>SD-0710</td>
<td>29</td>
<td>-46</td>
</tr>
<tr>
<td>S. Carlsbad</td>
<td>CB-0775</td>
<td>13</td>
<td>-16</td>
</tr>
<tr>
<td>N. Carlsbad</td>
<td>CB-0865</td>
<td>83</td>
<td>39</td>
</tr>
<tr>
<td>Oceanside</td>
<td>OS-0930</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>68</td>
<td>16</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td>120</td>
<td>76</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td>13</td>
<td>-46</td>
</tr>
</tbody>
</table>

Advance during the summer wave season, the gains shown in the table are larger than they would have been without the seasonal bias. The Spring-to-Fall comparison is necessary, however, to bracket the life of the beach fills. The shorezone volumes shown in the table do not reflect a comparable seasonal bias, in that the shorezone encompasses the entire region in which seasonal cross-shore sediment transport may be expected to occur.

5.2.1. Imperial Beach (Figure 19)

The Imperial Beach fill, consisting primarily of coarse sand, was constructed from May 22 to June 5, 2001 (Table 1). At 120,000 cy, it was among the smallest fills in the RBSP. Pre-and post-nourishment views of the receiver beach are provided in Plate 1.

Figure 25 displays the profiles obtained on Transect SS-0025 between Spring 2001 and Fall 2004. During the initial year following the fill placement (Fall 2001 to Fall 2002),
the over steepened beach face adjusted to a more stable configuration, evidenced by above-water erosion and profile flattening. Substantial above-water accretion is evident in the Fall 2003 profile, but this trend was reversed in 2004. The profile changes during the 2004 Monitoring Year were consistent with the anticipated seasonal trends in cross-shore transport: offshore in winter and onshore in summer.

Plate 1. Imperial Beach Receiver Site, April 2001 through October 2004
Note: 120,000 cy of nourishment ($d_{so} = 0.24–0.52$ mm) was provided from May 22 to June 6, 2001.

Figure 25. Transect SS-0025 at Imperial Beach Receiver Site
Between Spring 2001 and Fall 2004, the net result of the profile changes on Transect SS-0025 was a shoreline advance of 120 ft and a shorezone volume increase of 9 cy/ft. The shoreline advance was the largest recorded among the twelve RBSP receiver sites; however, the volume increase was less than the average value of 16 cy/ft.

Figure 18a indicates a trend of increasing shorezone volume at the two transects located within the fill (SS-0025 and SS-0020) between the time of nourishment and Spring 2003. This trend was reversed through the remainder of the RBSP Monitoring Period. While the initial increase is attributable to the fill, the gains realized in subsequent years may have resulted from an influx of sediment from the north – a conclusion suggested by the losses that occurred on Transects SS-0050 and SS-0035 during the same period. Similarly, the losses sustained at the two fill transects (SS-0025 and SS-0020) following Spring 2003 correspond to gains at the northerly transects (SS-0050 and SS-0035), providing further indication of alongshore sediment exchange between these locations.

5.2.2. Mission Beach (Figure 20)

The Mission Beach fill consisted of 151,000 cy of coarse sand placed from May 10 to May 21, 2001. Pre-and post nourishment photographs are shown in Plate 2, while profiles obtained on Transect MB-0340 are plotted in Figure 26.

The consecutive Fall profiles obtained between 2001 and 2003 (Figure 26) indicate progressive erosion of the above-water beach and flattening of the beach face following the placement of the RBSP fill. Between Fall 2002 and Fall 2004 profile changes were modest, suggesting relative stability over the past two years. The Fall 2004 profile remained above the pre-RBSP envelope between the back beach and MSL, suggesting an enduring benefit from the nourishment material. The prominent berm evident in the Fall profiles resulted not from natural processes, but rather from mechanical grading undertaken to eliminate ponding in the back beach that occurred after placement of the nourishment material (Rennie, 2003; Boudreau, 2003). A similar feature is evident on Transect MB-0335 (Appendix D), which also crosses the fill site.

Between Spring 2001 and Fall 2004, the MSL shoreline advanced 110 ft and the shorezone volume increased by 18 cy/ft on Transect MB-0340. Both of these values exceeded the respective averages for the RBSP receiver sites.

Figures 14b and 18b document subaerial and shorezone volume changes on the five Mission Beach transects. As implied by the profile data, considerable subaerial volume gains occurred on the two transects crossing the fill (MB-0340 and MB-0035) immediately
after nourishment. Despite seasonal fluctuations, the subaerial volume gains have persisted at both locations, representing a significant improvement over the pre-nourishment condition. When the entire shorezone is considered (Figure 18b), both transects exhibit a trend of steadily increasing volume from Fall 2001 to Spring 2003. This trend was reversed following the Spring 2003 Survey. Similar trends are not evident on adjacent transects, suggesting that alongshore dispersal of the fill material has been modest.

Plate 2. Mission Beach Receiver Site, April 2001 through October 2004
Note: 15,1000 cy of nourishment (q = 0.62 mm) was provided from May 10 to May 21, 2001.

Figure 26. Transect MB-0340 at Mission Beach Receiver Site
5.2.3. Torrey Pines (Figure 21)

At Torrey Pines, the beach fill was composed of 245,000 cy of fine sand placed from April 6 to April 27, 2001. Among the twelve RBSP fills, this quantity was exceeded only by the 421,000 cy supplied at Oceanside. Pre- and post-nourishment photographs are provided in Plate 3, while successive profiles on Transect TP-0520 are shown in Figure 27.

Plate 3. Torrey Pines Receiver Site, April 2001 through October 2004
Note: 245,000 cy of nourishment ($d_{50} = 0.14$ mm) was provided from April 6 to April 27, 2001.

Figure 27. Transect TP-0520 at Torrey Pines Receiver Site
During the initial two-year period following fill placement (Fall 2001 to Fall 2003), the profile data on TP-0520 indicate progressive erosion of the above-water beach and flattening of the beach face. Changes were muted during the 2004 Monitoring Year, however, with the Fall 2004 profile closely approximating the Fall 2003 profile. At the time of the Fall 2003 and Fall 2004 Surveys, the beach profile no longer exceeded the pre-RBSP envelope, indicating that the fill had been largely dispersed. When integrated over the 30-month period between Spring 2001 and Fall 2004, the profile changes produced a sizeable shoreline advance of 73 ft and a modest shorezone volume loss of 5 cy/ft.

Similar to the profile data, the time series of subaerial volume change (Figure 14c) reflect sizeable gains immediately after nourishment on the two transects crossing the Torrey Pines fill (TP-0530 and TP-0520). A trend of declining volumes then persisted for the remainder of the RBSP Monitoring Period, indicating a gradual dispersal of the fill. Shorezone volume gains on Transect TP-0530 (Figure 18c) were short-lived, as losses during the initial winter reduced the volumes to pre-RBSP levels. Approximately 2 miles south of the Torrey Pines receiver site, however, a trend of increasing shorezone volume is evident on Transect TP-0470. Although a considerable distance from the fill site, the gain may have resulted, at least in part, from downcoast transport of the Torrey Pines nourishment material.

Additional information on the performance of the Torrey Pines fill can be obtained from the Southern California Beach Processes Study. The study findings are presented in a series of quarterly reports available at http://cdip/ucsd.edu (e.g., Guza, et al., 2002).

5.2.4. Del Mar (Figure 22)

The Del Mar fill (Plate 4) consisted of 183,000 cy of fine sand placed from April 27 to May 10, 2001. As illustrated in Figure 28, the beach face flattened in the initial year following nourishment (Fall 2001 to Fall 2002). Changes have been modest since the 2002 Monitoring Year, however, with the Fall 2003 and 2004 profiles closely approximating the Fall 2002 profile. When the 42-month period between Spring 2001 and Fall 2004 is considered, these changes produced a sizeable shoreline advance of 80 ft with an above-average shorezone volume gain of 29 cy/ft.

As suggested by the profile data, the shorezone volume at Transect DM-0580 (Figure 18c) experienced a relatively minor gain immediately after placement of the RBSP nourishment material. The volume then decreased as the fill material was dispersed, before becoming relatively stable during the 2003 and 2004 Monitoring Years. Approximately 3,400 ft south of the receiver site, at Transect DM-0565, a trend of increasing shorezone
volume during the 2001 and 2002 Monitoring Years suggests that the fill material was transported downcoast.

Plate 4. Del Mar Receiver Site, April 2001 through November 2004
Figure 28. Transect DM-0580 at Del Mar Receiver Site

Note: 183,000 cy of nourishment ($d_{so} = 0.14$ mm) was provided from April 27 to May 10, 2001.
5.2.5. **Fletcher Cove (Figure 22)**

The Fletcher Cove fill, placed from June 15 to 24, 2001, consisted of 146,000 cy of fine sand. Pre-and post nourishment photographs are provided in Plate 5. Figure 29 displays the Spring 2001 and Post-Nourishment profiles on Transect SD-0600, along with the profiles acquired in Fall 2001, Fall 2002, Fall 2003, Spring 2004, and Fall 2004.

Plate 5. **Fletcher Cove Receiver Site, April 2001 through October 2004**
Figure 29. Transect SD-0600 at Fletcher Cove Receiver Site

Note: 146,000 cy of nourishment ($d_{so} = 0.14$ mm) was provided from June 15 to June 24, 2001.
The profile data at SD-0600 indicate that the majority of the nourishment material placed at the site in June 2001 had been lost from the above-water beach by Fall 2002. However, profile changes have been modest during the 2003 and 2004 Monitoring Years, with the respective Fall profiles nearly identical to the Fall 2002 profile. The Fall 2002, Fall 2003 and Fall 2004 profiles exceed the upper boundary of the pre-RBSP envelope near the -2 ft elevation, suggesting a slight improvement over the pre-nourishment condition. In the 42-month period between the Spring 2001 and Fall 2004 surveys, the shoreline position advanced 43 ft while the shorezone volume increased by 18 cy/ft.

In keeping with the profile data, a modest increase in subaerial volume is evident at Transect SD-0600 at the time of the Fall 2001 Survey (Figure 14c). The gain was short-lived, however, with the above-water volume approximating the pre-RBSP condition by Spring 2002. When the shorezone volume is considered (Figure 18c), a similar increase is noted shortly after nourishment. Although the volume decreased during the initial winter, a small net shorezone volume gain persisted through the remainder of the RBSP Monitoring Period.

5.2.6. Cardiff (Figure 22)

Cardiff received the smallest nourishment quantity among the RBSP receiver sites, 101,000 cy of medium sand. The fill was placed from August 2 to 10, 2001. Successive profiles on Transect SD-0630 are shown in Figure 30, while pre- and post-nourishment photographs are provided in Plate 6.

Figure 30 indicates that substantial above-water erosion occurred at the Cardiff receiver site during the first year following fill placement (Fall 2001 to Fall 2002). Subsequent changes were modest, with the above-water portion of the Fall 2002, 2003 and 2004 profiles almost identical. The Fall 2004 profile exceeded the upper boundary of the pre-RBSP envelope between the berm and approximately -10 ft, suggesting an improvement over the pre-RBSP condition.

Between Spring 2001 and Fall 2004, the net result of these profile changes on Transect SD-0630 was a shoreline advance of 104 ft and a shorezone volume increase of 76 cy/ft. The fact that both of these values exceed the respective RBSP averages is surprising when the small size of the fill is taken into consideration.

As suggested by the profile data, significant subaerial and shorezone volume gains occurred at Transect SD-0630 immediately after nourishment (Figures 14c and 18c). Losses
Figure 30. Transect SD-0630 at Cardiff Receiver Site.
during the following winter (2001-2002) reduced the volumes to pre-RBSP levels. While the subaerial volume remained stable through the remainder of the RBSP Monitoring Period, the shorezone volume rebounded to register a substantial gain. A trend of increasing
shorezone volume also is evident at Transects SD-0625 and SD-0620, suggesting downcoast transport of the fill material.

While the initial shorezone volume increase at SD-0630 is attributable to the fill, the gains realized in subsequent years may have resulted from an increase in sediment bypassing quantities at San Elijo Lagoon (Section 2.2.3). During the RBSP Monitoring Period, the estimated average bypassing rate at San Elijo Lagoon was 26,000 cy/yr. This rate exceeded the pre-RBSP average by 12,000 cy/yr. Hence, the additional material may be contributing to the improved condition of the beaches in the Cardiff area as it moves downcoast.

5.2.7. Moonlight Beach (Figure 23)

The Moonlight Beach fill, consisting primarily of coarse sand, was placed from August 10 to 16, 2001. Although the quantity was small, at 105,000 cy, the design fill width of 180 ft was among the largest of the twelve RBSP sites (Table 1). Pre-and post-nourishment photographs are shown in Plate 7; profiles on Transect SD-0670 are provided in Figure 31.

The successive Fall profiles shown in Figure 31 indicate rapid erosion of the above-water beach and flattening of the beach face between the time of fill placement and Fall 2003. As a result, the subaerial volume gains that occurred at the Moonlight Beach receiver site diminished relatively quickly. The Fall 2004 profile was nearly identical to the Fall 2003 profile, indicating that changes during the 2004 Monitoring Year were modest. At the time of the Fall 2004 Survey, the profile at SD-0670 exceeded the upper boundary of the pre-RBSP on the beach face, but dropped to the lower boundary seaward of the -10 ft isobath. Integrating these changes over the 42-month period between the Spring 2001 and Fall 2004 surveys, the shoreline position advanced 97 ft, but the shorezone volume decreased by 20 cy/ft.

Similar trends are evident in Figures 14c and 18c, which display time series of the subaerial and shorezone volume changes. Shorezone volume gains attributable to the nourishment are apparent in Fall 2001, followed by a trend of diminishing volumes through the remainder of the RBSP Monitoring Period. Subaerial volumes decreased during the initial two winters following nourishment (2001-2002 and 2002-2003), but were relatively stable for the remainder of the RBSP Monitoring Period. As no survey transects exist immediately to the south of the Moonlight Beach receiver site, the extent to which the nourishment material benefited the downcoast beaches cannot be quantified.
Plate 7. Moonlight Beach Receiver Site, April 2001 through October 2004
Figure 31. Transect SD-0670 at Moonlight Beach Receiver Site

Note: 105,000 cy of nourishment ($d_{so} = 0.34–0.62$ mm) was provided from August 10 to August 16, 2001.
5.2.8. **Leucadia (Figure 23)**

The Leucadia fill (Plate 8) consisted of 132,000 cy of coarse sand. A relatively long, narrow fill with a nominal width of 120 ft, it was placed from June 4 to 15, 2001. Survey profiles on Transect SD-0690 are provided in Figure 32.

Plate 8. Leucadia Receiver Site, April 2001 through October 2004
Note: 132,000 cy of nourishment ($d_{so} = 0.62$ mm) was provided from June 4 to June 15, 2001.

Figure 32. Transect SD-0690 at Leucadia Receiver Site
The profile data on SD-0690 indicate progressive erosion of the above-water beach and flattening of the beach face throughout the RBSP Monitoring Period. However, the rate of change slowed in each consecutive year. Between Spring 2001 and Fall 2004, the MSL shoreline advanced 19 ft. Although the shorezone volume increased by 26 cy/ft during the 42-month period, a portion of this modest gain appears to have resulted from the enhanced mapping of offshore reefs that commenced in Fall 2002 (Section 4.1.1; Figure 32).

The subaerial volumes at the Leucadia receiver site declined gradually following nourishment in 2001 (Figure 14c). However, shorezone volumes gains have persisted since fill placement. This apparent stability may have resulted from an influx of material from the Batiquitos fill (located less than one mile to the north), as well as from the enhanced mapping of offshore reefs referred to above. Similarly, downcoast transport of the Leucadia fill material appears to have benefited the adjacent beaches to the south. To this end, a trend of subaerial and shorezone volumes gains is evident at Transects SD-0680 and SD-0675 subsequent to the RBSP.

5.2.9. Batiquitos (Figure 23)

At the Batiquitos receiver site, 117,000 cy of coarse sand were provided from August 16 to 23, 2001 (Plate 9). Profile data for Transect SD-0710 are shown in Figure 33. The profile data for the Batiquitos fill indicate a sequence of events similar to that recorded at Leucadia: above-water erosion and profile flattening throughout the RBSP Monitoring Period, with a diminishing rate of change each successive year. The net outcome over the 42-month span between Spring 2001 and Fall 2004 was a shoreline advance of 29 ft accompanied by a shorezone volume decrease of 46 cy/ft. The shorezone volume loss was the greatest among the twelve RBSP sites. As in the case of Moonlight Beach, which also registered a decrease in shorezone volume during this period, the loss stemmed from pronounced erosion in water depths of -4 ft to -20 ft.

In keeping with the profile changes, Figure 14c indicates declining subaerial volumes commencing with the Fall 2002 Survey on the two transects located within the fill (SD-0720 and SD-0710). Similarly, a trend of gradually diminishing shorezone volume during the RBSP Monitoring Period is apparent at Transect SD-0710 (Figure 18c). A comparable trend is evident at Transect SD-0720 through the 2003 Monitoring Year, but a shorezone volume gain occurred in 2004. The loss of nourishment material from the Batiquitos site appears to have produced gains at the adjacent beaches to the south. At Transect SD-0700, located 1,100 ft to the south of the Batiquitos receiver site, subaerial and
Plate 9. Batiquitos Receiver Site, April 2001 through October 2004

shorezone volumes increased during Winter 2001-2002. Furthermore, these gains persisted through Fall 2004. As indicated in Section 5.2.8, the Leucadia site also appears to have benefited from the downcoast dispersal of the Batiquitos fill. These findings suggest that the two fills have merged.
Note: 117,000 cy of nourishment ($d_{50} = 0.62$ mm) was provided from August 16 to August 23, 2001.

Figure 33. Transect SD-0710 at Batiquitos Receiver Site
5.2.10. **South Carlsbad (Figure 23)**

South Carlsbad received 158,000 cy of coarse sand from June 25 to July 6, 2001 (Plate 10). Successive survey profiles obtained between Spring 2001 and Fall 2004 on Transect CB-0775 are shown in Figure 34.

Plate 10. South Carlsbad Receiver Site, April 2001 through October 2004
Figure 34. Transect CB-0775 at South Carlsbad Receiver Site
Like many of the other RBSP nourishment sites, the South Carlsbad fill experienced progressive above-water erosion and profile flattening following placement. The rate of change decreased with each successive year. In contrast to the other sites, however, the Fall profiles show a trend of persistent and substantial erosion of the nearshore bar between MLLW and -10 ft. The net result was a shoreline advance of 13 ft and a shorezone volume loss of -16 cy/ft between Spring 2001 and Fall 2004. The shoreline advance was the lowest among the twelve RBSP receiver sites.

While significant subaerial and shorezone volume gains were realized on Transects CB-0780 and CB-0775 just after fill placement, the remainder of the RBSP Monitoring Period was characterized by declining volumes. As indicated in Figure 14c, the subaerial volumes on these transects approximated the pre-RBSP levels at time of the Fall 2004 survey. The shorezone volumes decreased to such an extent that a net loss resulted at both locations (Figure 18c). Downdrift, at Transect CB-0760, the dispersal produced only modest, transient increases in the subaerial and shorezone volumes (Figures 14c and 18c).

5.2.11. North Carlsbad (Figure 24)

The 225,000 cy North Carlsbad fill was the third largest constructed under the RBSP. Placed from July 6 to August 2, 2001, it consisted of a mixture of coarse (21%), medium (2%) and fine (77%) sand. Beach profiles obtained on Transect CB-0865 are shown in Figure 35, while pre- and post-nourishment photographs are provided in Plate 11.

Although the beach face became progressively flatter during the first two years after the RBSP, the above-water erosion at North Carlsbad was modest compared to that which occurred at most of the other receiver sites. The minor differences between the Fall 2003 and Fall 2004 profiles indicate relative stability during the 2004 Monitoring Year. The resulting shoreline advance of 83 ft and shorezone volume increase of 39 cy/ft that occurred between Spring 2001 and Fall 2004 exceed the corresponding RBSP average values.

The time series of subaerial and shorezone volume changes at Transect CB-0880 (Figures 14c and 18c) parallel the profile changes. The substantial volume gains that occurred immediately after nourishment persisted through Fall 2004 with only modest attrition. In the absence of other factors, this positive outcome would appear to be inconsistent with the high percentage of fine sand contained in the fill material (77%). It may be explained, however, by the arrival of fill from the Oceanside receiver site to the north. The volume changes at Transects CB-0850, CB-0840, and CB-0830 (all of which lie within 5,000 ft of the North Carlsbad site) suggest that even as material was arriving from
Figure 35. Transect CB-0865 at North Carlsbad Receiver Site

Note: 225,000 cy of nourishment ($d_{50} = 0.14–0.62$ mm) was provided from July 6 to August 2, 2001.
the north, a portion of the North Carlsbad fill was moving downcoast to benefit the adjacent beaches. At these locations, a trend of steadily increasing subaerial and shorezone volumes has persisted since placement of the RBSP fill material (Figures 14c and 18c).

Plate 11. North Carlsbad Receiver Site, April 2001 through October 2004
5.2.12. Oceanside (Figure 24)

The Oceanside fill (Plate 12) was the largest (421,000 cy) and longest (4,400 ft) of the RBSP fills. Comprised entirely of coarse sand, it also was the last to be constructed (August 24-September 23, 2001). Profiles obtained on Transect OS-0930 are presented in Figure 36.

The profile data indicate progressive above-water erosion and flattening of the nourished beach face between fill placement and Fall 2003. The rate of above-water volume loss decreased with time during this period. The Fall 2003 and Fall 2004 profiles are nearly identical, indicating stability during the past year. At the time of the Fall 2004 Survey, the profile exceeded the upper boundary of the pre-RBSP envelope between the back beach and the MSL shoreline, suggesting an enduring benefit from the nourishment. When integrated over the 42 month period between Spring 2001 and Fall 2004, the result of these changes was extremely favorable: a shoreline advance of 50 ft and a shorezone volume increase of 58 cy/ft. While the increase in beach width was below-average for the RBSP receiver beaches, the shorezone volume gain was second highest recorded at the twelve sites.

As suggested by the profile changes, the subaerial volume data at Transects OS-0930 and OS-0900 (Figure 14c) indicate a gradual dispersal of the fill material following the initial post-nourishment gains. However, at the time of the Fall 2004 Survey, the subaerial volumes still exceeded the pre-RBSP levels by considerable margins. The shorezone volume gains at these locations have persisted through Fall 2004 despite modest losses in the 2002 Monitoring Year (Figure 18c). As described in the preceding section, the volume changes shown in Figures 14c and 18c suggest that a portion of the Oceanside fill moved downcoast and coalesced with the North Carlsbad fill. The net result was a significant improvement over the pre-RBSP condition along more than 2 miles of coast between Transects OS-1000 (Oceanside) and CB-0830 (Carlsbad).

Possible reasons for the exemplary performance of the Oceanside fill include the large volume of nourishment and the coarse grain size. In addition, the sand bypassing rate at Oceanside Harbor during the RBSP Monitoring Period has been slightly higher than the pre-RBSP rate (Section 2.3). Hence, this material may be contributing to the improved condition of the beaches in Oceanside and Carlsbad as it moves downcoast.
Plate 12. Oceanside Receiver Site, April 2001 through October 2004
Note: 421,000 cu yd of nourishment (d_50 = 0.62 mm) was provided from August 24 to September 23, 2001.

Figure 36. Transect OS-0930 at Oceanside Receiver Site
6. LAGOON ENTRANCE CONDITION

Section 6 evaluates the condition of five lagoon entrances in the Oceanside Littoral Cell. In a departure from prior annual reports, the analysis covers the three-year period between Fall 2001 and Fall 2004 rather than the entire RBSP Monitoring Period. This change was instituted to reflect the conclusion that the RBSP fills exerted no material impact on the lagoon entrances prior to Fall 2001.

An overview is provided in Section 6.1, followed by a discussion of each entrance in Section 6.2. The location of each entrance is indicated in Figure 1.

6.1. Overview

Lagoon entrances in the Oceanside Cell are influenced by a combination of coastal processes, fluvial processes, and human activities. The entrance channels can close when littoral drift overwhelms the capacity of tidal currents and river discharge to remove the arriving sediment. Conversely, tidal exchange can be restored or enhanced during periods of high rainfall, when sediment is flushed from the channels by increased river discharge. The desire for sustained or enhanced tidal exchange also has lead to human intervention, consisting primarily of inlet stabilization and mechanical excavation.

Using a probabilistic approach, Elwany, et al. (1998), estimated that San Dieguito, a typical southern California lagoon, would remain open to tidal exchange only 34% of the time under natural conditions. The percent varies with the climatic cycle, however, increasing to 66% during periods of above-average precipitation and decreasing to only 12% during periods of below-average precipitation.

Elwany asserts that the duration of the period that a lagoon remains open is highly dependent on the condition of the inner channels. When the inner channels become deep and relatively free of sand following a period of heavy precipitation and strong river flows, the tidal prism often is sufficient to maintain an ocean outlet with limited human intervention. Conversely, during prolonged dry periods, the interior channels fill with sand. As the tidal prism diminishes, the ocean outlet becomes increasingly susceptible to closure. In the case of San Dieguito Lagoon, Elwany estimates that the interior channels must be flushed free of sand by strong river flows every three to five years in order for the lagoon to remain open to tidal exchange with minimal maintenance.
As discussed in Section 2, three consecutive years of below-average rainfall and two years of near-average rainfall have followed the 1997-98 El Niño event. The resulting absence of strong flood flows has increased the probability of prolonged lagoon closures and the propensity for the lagoons to re-close after mechanical opening.

Figure 37 shows the average percentage of time that each of the five lagoons remained open to tidal exchange prior and subsequent to and after the RBSP. As indicated in the figure, the pre-RBSP period of record for each lagoon varies from four to 46 years in accordance with the available data. Prior to the RBSP, the two jetty-stabilized entrances, Agua Hedionda and Batiquitos, never closed. In contrast, the three unstabilized entrances closed periodically despite efforts to maintain tidal exchange. The percentage of time open varied widely among these lagoons, with values of 43% at San Elijo, 77% at San Dieguito, and 93% at Los Peñasquitos.

![Figure 37. Percentage of Time Lagoon Entrances Open to Tidal Exchange Prior and Subsequent to the RBSP](image)

Subsequent to the RBSP, the two jetty-stabilized entrance channels remained open to the full range of tidal exchange with only minor variations in water depth. As indicated in
Figure 38, the unstabilized entrance channels at Los Peñasquitos and San Dieguito closed on seven and five occasions, respectively. At San Elijo, the unstabilized channel closed on only four occasions. As a result, the entrance channel was open to tidal exchange more than the historical average at San Elijo (91% vs. 43%), less than the historical average at San Dieguito (51% vs. 77%), and essentially the same as the historical average at Los Peñasquitos (86% vs. 93%).

Figure 38. Condition of Unstabilized Lagoon Entrances Following the RBSP

As discussed in Section 2.2, sand bypassing is conducted at three lagoons: San Elijo, Batiquitos, and Aqua Hedionda. For the purpose of evaluating sedimentation in the entrance channels, the overall dredge rate provides a more accurate indicator than the bypassing rate. The dredging rate includes bypassing operations and, in the case of Batiquitos Lagoon, enhancing least tern nesting sites with dredge spoils. The dredge quantities attributable to sedimentation occurring between November 1993 and October 2001 (pre-RBSP) are shown in Table 16, while those attributable to sedimentation during the post-RBSP period are shown in Table 17. Many of these values were presented previously in Section 2.2.3. The dredge rates following the RBSP (Fall 2001 to Fall 2004) are compared with the pre-RBSP values in Table 18.
Table 16. Lagoon Dredging Attributable to Sedimentation Occurring Between November 1993 and October 2001 (Pre-RBSP)

<table>
<thead>
<tr>
<th>Bypass Project</th>
<th>Date</th>
<th>Activity</th>
<th>Dredge Quantity (cy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Elijo Lagoon</td>
<td>1995</td>
<td>Bypassing</td>
<td>6,000</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>Bypassing</td>
<td>8,000</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>Bypassing</td>
<td>31,000</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>Bypassing</td>
<td>12,000</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>Bypassing</td>
<td>17,000</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>Bypassing</td>
<td>23,000</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>Bypassing</td>
<td>23,000</td>
</tr>
</tbody>
</table>

Average Annual Dredge Rate at San Elijo Lagoon = 15,000 cy/yr

Batiquitos Lagoon	1999	Bypassing and Habitat Enhancement	11,000
	2000	Bypassing	4,000
	2001	Bypassing and Habitat Enhancement	49,000

Average Annual Dredge Rate at Batiquitos Lagoon = 16,000 cy/yr (1)

Agua Hedionda Lagoon	1996	Bypassing	443,000
	1997	Bypassing	197,000
	1999	Bypassing	203,000
	2001	Bypassing	429,000

Average Annual Dredge Rate at Agua Hedionda Lagoon = 182,000 cy/yr

Source: Dillingham, 2002; Tucker, 2002; Gibson, 2005

Note: (1) Rate computed for the four-year period following lagoon restoration (1998 to 2001).

At Batiquitos, where lagoon restoration was undertaken during the pre-RBSP monitoring years, comparison of the two dredge rates is not meaningful. At San Elijo, the dredge rate following the RBSP (27,000 cy/yr) exceeded the pre-RBSP average (15,000 cy/yr) by 80%. As explained in Section 2.2, however, the higher rate is partially attributable to an increased level of maintenance made possible by additional funding. The post-RBSP dredge rate at Agua Hedionda (169,000 cy/yr) was within 10% of the pre-RBSP rate (182,000 cy/yr).

6.2. Lagoon Entrance Performance

The performance of each lagoon entrance following RBSP fill placement is evaluated below. To provide a basis for comparison, the pre-RBSP performance also is
summarized. Supporting topographic data are provided in Appendix H, while ground photographs of the three unstabilized channels appear in Appendix I.

Table 17. Lagoon Dredging Attributable to Sedimentation Occurring Between November 2001 and October 2004 (Post-RBSP)

<table>
<thead>
<tr>
<th>Bypass Project</th>
<th>Date</th>
<th>Activity</th>
<th>Dredge Quantity (cy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Elijo Lagoon</td>
<td>2002</td>
<td>Bypassing</td>
<td>18,000</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>Bypassing</td>
<td>32,000</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>Bypassing</td>
<td>30,000</td>
</tr>
<tr>
<td>Average Annual Bypass Rate at San Elijo Lagoon = 27,000 cy/yr (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batiquitos Lagoon</td>
<td>2003</td>
<td>Habitat Enhancement</td>
<td>75,000</td>
</tr>
<tr>
<td>Average Annual Bypass Rate at Batiquitos Lagoon = 38,000 cy/yr (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua Hedionda Lagoon</td>
<td>2003</td>
<td>Bypassing</td>
<td>337,000</td>
</tr>
<tr>
<td>Average Annual Bypass Rate at Agua Hedionda Lagoon = 169,000 cy/yr (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Dillingham, 2002; Tucker, 2002; Hughes 2003; Gibson, 2005

Note: (1) Rate computed for the three-year period from Fall 2002 to Fall 2004. (2) Rate computed for the two-year period from Fall 2002 to Fall 2003. (3) Rate computed for the two-year period from Fall 2002 to Fall 2003.

Table 18. Comparison of Pre- and Post-RBSP Lagoon Dredging Rates

<table>
<thead>
<tr>
<th>Location</th>
<th>Pre-RBSP Average (cy/yr)</th>
<th>Post-RBSP Average (cy/yr)</th>
<th>Difference (cy/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Elijo</td>
<td>15,000</td>
<td>27,000</td>
<td>12,000</td>
</tr>
<tr>
<td>Batiquitos</td>
<td>16,000</td>
<td>38,000</td>
<td>n/m (4)</td>
</tr>
<tr>
<td>Agua Hedionda</td>
<td>182,000</td>
<td>169,000</td>
<td>-13,000</td>
</tr>
</tbody>
</table>

Notes: (1) Pre-RBSP Average based on the Monitoring Years 1994-2001, as described in Table 16. (2) Post-RBSP Average based on the Monitoring Years 2002-2003 for San Elijo, and 2002-2003 for Batiquitos and Agua Hedionda, as described in Table 17. (3) Difference represents Post-RBSP Average minus Pre-RBSP Average. (4) Difference not meaningful because Pre-RBSP bypass rate was derived from the period during and immediately after lagoon restoration.

6.2.1. Agua Hedionda

The rubble mound jetties at the Agua Hedionda Lagoon entrance were constructed in 1954 to maintain a stable inlet for the Encina Power Plant seawater intake (Shaw, 1980). Extensive dredging was performed at the same time to create a cooling water basin. As a
result of these modifications, as well as ongoing maintenance dredging, the lagoon entrance has remained open to tidal exchange since 1955.

Historically, maintenance dredging has been required at intervals of one to two years to remove a flood-tide shoal that forms in the cooling basin. Dredge quantities have ranged from 90,000 to 459,000 cy (Tucker, 2002). Over the 46-yr period preceding the RBSP (1955-2001), an average of 140,000 cy/yr was removed from the lagoon and placed on the adjacent beaches (Note: this figure does not include material derived from basin modifications in 1998 and 1999). As discussed in Section 2.2, the dredging operation returns sediment to the littoral system that has been trapped in the interior basin, and therefore represents sand bypassing.

Maintenance dredging was conducted on one occasion subsequent to the RBSP. Between December 2002 and April 2003, 337,000 cy were removed from the lagoon (Hughes, 2003). The present bypassing program typically is conducted every two years, with the next operation scheduled for 2005. Applying the quantity bypassed in 2003 to a two-year period equates to an average rate of 169,000 cy/yr during the post-RBSP period. This rate was slightly below the pre-RBSP rate of 182,000 cy/yr shown in Table 16.

Plate 13 displays the condition of the north entrance to Agua Hedionda Lagoon on a semi-annual basis from April 2001 to October 2004. In the April 2001 photo, a dredge is evident removing the flood tide shoal from the region landward of the jetties. The next three photos show the progressive return of the shoal, with the feature fully emergent in November 2002. The shoal is not evident in the May 2003, having been removed during the 2002-2003 dredge program, but reappears and grows larger in the last three photos (November 2003 to October 2004).

Figure 39 presents the controlling elevations that were measured in the north entrance channel on a semi-annual basis from Spring 1997 through Fall 2004. (“controlling elevation” refers to the lowest elevation at which water can pass unobstructed between the ocean and the lagoon.) During the period that preceded the RBSP (Spring 1997-Spring 2001), the controlling elevations ranged from -4.3 to -6.2 ft (MLLW). Subsequent to the nourishment activities (Fall 2001 to Fall 2004), the controlling elevations were comparable: -4.9 to -6.3 ft.
Plate 13. Agua Hedionda Lagoon North Entrance, April 2001 through October 2004
Prior to 1994, the entrance to Batiquitos Lagoon was unstabilized and prone to frequent closure (SANDAG, 1999b). As part of the Batiquitos Lagoon Restoration Project, conducted between 1994 and 1997, two rubble mound jetties were constructed at the entrance and 1.8 million cy of sediment were dredged from the wetlands.

Since completion of the initial wetland restoration effort, the lagoon has remained open to tidal exchange. Periodic dredging has been required, however, to maintain the tidal prism. As indicated previously in Table 16, an average of 16,000 cy/yr was removed from the lagoon and either placed on the adjacent beaches or used for habitat enhancement prior to the RBSP. This rate underestimates the long-term dredge requirement, because the major dredge activities associated with the lagoon restoration effort had just been completed.

No bypassing operations have been conducted subsequent to the RBSP. However, 75,000 cy of sediment were dredged from the lagoon in 2003 and used to enhance least tern nesting sites within the lagoon (Dillingham, 2004). The resulting dredge rate during the

Figure 39. Controlling Elevation for Tidal Exchange in Agua Hedionda Lagoon

6.2.2. Batiquitos
The post-RBSP period was 38,000 cy/yr (Table 17). Although this rate exceeded the pre-RBSP average of 16,000 cy/yr, the latter figure is anomalously low as explained above.

Plate 14 illustrates the condition of the Batiquitos Lagoon entrance channel between April 2001 and October 2004. Substantial shoals are evident in the outer and middle basins in all eight photographs, with little change evident over the 42-month period despite the aforementioned dredge programs.

Between Spring 1997 and Spring 2001, the controlling elevations in the entrance channel varied between -5.3 and -6.6 ft (Figure 40). The elevations measured after placement of the RBSP nourishment material, -5.3 to -6.3 ft, were within this range.

6.2.3. San Elijo

Based on records maintained by the San Elijo Lagoon Conservancy (Gibson, 2003), San Elijo Lagoon was open to tidal exchange only 43% of the 15-year period preceding the RBSP (1987-2001). The average closure frequency during this period was 4.4 times per year, while the frequency of mechanical opening was 2.9 times per year. The difference between these two frequencies is attributable to natural opening of the entrance channel.

Plate 15 shows the condition of the San Elijo entrance channel between April 2001 and October 2004. In February 2002, the channel closed for approximately one month before tidal exchange was restored by mechanical means (Figure 38). Mechanical enlargement of the channel was undertaken in July 2002 to increase the flow. The lagoon then closed for eight days in early February 2003 before re-opening naturally. It remained open for the next 11 months, with mechanical enlargements conducted in February and May 2003. During the 2004 Monitoring Year, the lagoon entrance closed on two occasions (mid-January and mid-April). It opened naturally approximately one month after the January closure, but mechanical intervention was required in May to restore tidal access after the second closure. The entrance channel then remained open for the rest of the Monitoring Year.

The lagoon was open 91% of the time during the three-year period following the RBSP (Fall 2001 to Fall 2004), greatly exceeding the historical average of 43%. The occurrence of only four closures during this period (1.3 closures per year) also represents a significant improvement relative to the channel’s past history of 4.4 closures per year. Similarly, the frequency of channel maintenance (mechanical openings and enlargements) during the post-RBSP period, 1.7 times per year, was well below the historical average of 2.9 times per year. The most plausible explanation for the improved performance of the entrance is the increased dredging within the lagoon made possible by additional funding.
Plate 14. Batiquitos Lagoon Entrance, April 2001 through October 2004
The controlling elevations noted subsequent to the RBSP nourishment activities (Fall 2001 to Fall 2004) ranged from +0.7 to +2.4 ft, near the bottom of the range that prevailed prior to the RBSP (+0.6 to +6.7 ft; Figure 41).

Based on the elevation change data presented in Appendix H, the sediment volume in the entrance channel survey area decreased by 4,400 cy between Fall 2003 and Spring 2004, and increased by 1,800 cy between Spring 2004 and Fall 2004. The net change during the 2004 Monitoring Year was a decrease of 2,600 cy. For the three-year period following the RBSP (Fall 2001 to Fall 2004), a net volume increase of 1,700 cy occurred in the entrance channel survey area.

6.2.4. San Dieguito

Based on data compiled by Elwany, *et al.* (1998; 2003), San Dieguito Lagoon was open to tidal exchange 77% of the time between 1979 and 2001. On average, the channel closed 0.6 times per year, and was opened mechanically 0.6 times per year. The relatively low closure frequency can be attributed in part to the above-average rainfall during the period of record.
Plate 15. San Elijo Lagoon Entrance, April 2001 through October 2004
The entrance channel (Plate 16) closed on five occasions following the RBSP (Figure 38). The first occurred in late November 2001, approximately six months after fill placement at the Del Mar receiver site. The lagoon remained closed to tidal exchange for more than 10 months before mechanical intervention in October 2002. The blocked entrance channel is shown in the May 2002 photo. The entrance closed on four occasions during the 2003 Monitoring Year, requiring mechanical intervention to restore tidal exchange on three of those occasions (December 2002, April 2003, and September 2003). In one instance (February 2003), the entrance channel opened naturally following a period of high rainfall (Elwany, 2004). No closures were recorded during the 2004 Monitoring Year. The frequencies of channel closure (1.7 times per year) and mechanical opening (1.3 times per year) during the three-year period following the RBSP exceeded the corresponding historical averages (0.6 and 0.6 times per year, respectively).

The monitoring data suggest that the November 2001 closure was caused, at least in part, by the northerly transport of sediment from the nearby Del Mar receiver site. Of particular relevance is an accumulation of sediment noted at the waterline of Transect DM-0590 at the time of the Fall 2001 Survey (Section 5.2.4). This transect lies to the north
Plate 16. San Dieguito Lagoon Entrance, April 2001 through October 2004
of the Del Mar fill, and immediately south of the lagoon entrance channel (Figure 22). A similar accumulation was observed at the time of the Fall 2002 survey, but was absent in Fall 2003 and 2004 – a finding that suggests the Del Mar fill has been dispersed to a large extent by waves and currents, and no longer exerts a significant impact on the condition of San Dieguito Lagoon.

The entrance to San Dieguito lagoon was open 51% of the time subsequent to the RBSP, well below the historical average of 77%. This low percentage resulted in part from the fact that the lagoon was allowed to remain closed for nearly one year (November 2001 to October 2002). It is likely that climatic conditions also played an important role in the disparity between the two percentages, with the past three years characterized by below- to near-average precipitation (Section 2.1.1). In contrast, the pre-RBSP average was derived from a period of above-average precipitation (1979-2001). As discussed in Section 6.1, Elwany, et al. (1998) estimated that San Dieguito Lagoon remains open 66% of the time during periods of above-average precipitation and only 12% of the time during periods of below-average precipitation.

Following the RBSP, the controlling elevations in the entrance channel varied between +1.1 ft and +7.3 ft (Figure 42). Although large, this range lies within the elevations measured prior to the RBSP (+0.7 to +9.1 ft).

![Figure 42. Controlling Elevation for Tidal Exchange in San Dieguito Lagoon](image-url)
Between Fall 2003 and Spring 2004, a seasonal loss of 14,000 cy was experienced in the entrance channel survey area (Appendix H). This loss was followed by a seasonal gain of 2,100 cy between Spring and Fall 2004, producing a net loss of 11,900 cy for the 2004 Monitoring Year. For the three-year period following the RBSP (Fall 2001 to Fall 2004), the net volume loss in the entrance channel survey area was 16,100 cy.

6.2.5. Los Peñasquitos

Prior to the RBSP, the unstabilized entrance to Los Peñasquitos Lagoon typically closed several times per year. Efforts to re-establish the entrance channel with earth moving equipment date back to the 1960’s. Based on data compiled by the Los Peñasquitos Lagoon Foundation (West, 2003), the lagoon was open to tidal access about 50% of the time between 1965 and 1984.

More recently, the Los Peñasquitos Lagoon Foundation has funded a sustained effort to maintain tidal flow by mechanically opening or widening the channel several times each year (KEA Environmental, 2001). As a result, the lagoon was open to tidal exchange over 90% of the time between 1994 and 2001 (Williams, 1995; 1996; 1997; 1998; 1999; Ward, 2000; 2001; West, 2003). During this period, the entrance closed an average of 2.3 times per year, and was mechanically opened or widened 1.6 times per year.

The Los Peñasquitos entrance channel closed on three occasions during the 2002 Monitoring Year and four occasions during the 2003 Monitoring Year (Figure 38). The channel opened naturally following four of these closures, but mechanical excavation was required to re-establish tidal exchange on three other occasions (February 2002, June 2002, and February 2003). The most recent closure, occurring in late October 2003, persisted eight days into the 2004 Monitoring Year before the channel opened naturally. The lack of subsequent closures during the 2004 Monitoring Year is likely attributable to construction activities at the PCH bridge, which include a sheetpile structure to confine the lagoon channel. The channel condition at the time of the semi-annual overflights conducted between April 2001 and October 2004 is shown in Plate 17.

The lagoon was open to tidal exchange 86% of the time following the RBSP, closely approximating the historical average of 93%. The frequency of channel closure during this period (2.3 times per year) was identical to the historical average, while the frequency of mechanical opening (1.3 times per year) was slightly lower than the historical average (1.6 times per year).
Plate 17. Los Peñasquitos Lagoon Entrance, April 2001 through October 2004
The controlling elevations in the entrance channel measured subsequent to the RBSP nourishment activities ranged from +1.1 to +3.8 ft. Prior to the RBSP, the range was higher: +1.5 to +7.1 ft (Figure 43). The elevation change data in Appendix H indicate that the entrance channel survey area lost 4,000 cy between Fall 2003 and Spring 2004, and gained 6,000 cy between Spring 2004 and Fall 2004. The net gain for the year was 2,000 cy. During the three-year period following the RBSP, the entrance channel survey area lost 6,000 cy.

Figure 43. Controlling Elevation for Tidal Exchange in Los Peñasquitos Lagoon
7. CONCLUSIONS

Conclusions pertaining to the condition of San Diego County’s beaches and the impacts of the RBSP beach fills are summarized below:

1. Although the precipitation was slightly above average during the 2004 Monitoring Year, the majority of the rainfall was attributable to a single storm event that occurred in late October. Streamflow, wave energy, and storm frequency were below-average. The average values of these parameters during the four-year RBSP Monitoring Period remained well below the pre-RBSP averages. The primary implications of these environmental conditions are threefold: (1) the absence of large wave events following the implementation of the RBSP helped to prolong the life of the beach fills; (2) the scant precipitation and low streamflows failed to deliver significant quantities of beach-quality sediment to the coast; and (3) the low streamflows failed to flush coastal sediment from the lagoon entrances in the Oceanside Cell.

2. The only non-RBSP nourishment provided during the RBSP Monitoring Period was 2,000 cy (500 cy/yr) at Moonlight Beach. As a result, 90% of the RBSP fill material (1,868,000 cy) may be regarded as compensating for the average annual nourishment of 467,000 cy/yr provided from other sources in the years preceding the RBSP. The remaining RBSP material, 236,000 cy, represents incremental nourishment. Most of this nourishment was concentrated in the Oceanside Cell, which received an additional 264,000 cy (equivalent to 66,000 cy/yr over the four-year RBSP Monitoring Period). The Mission Beach Cell received an additional 144,000 cy (36,000 cy/yr), while the Silver Strand Cell incurred a deficit of 172,000 cy (43,000 cy/yr) due to the lack of nourishment other than the RBSP. Of particular note is the total absence of nourishment activities in all three littoral cells during the 2003 and 2004 Monitoring Years.

3. The sand bypass rates at Oceanside Harbor, Agua Hedionda and San Elio during the RBSP Monitoring Period (285,000, 192,000 and 26,000 cy/yr) exceeded the average annual rates in prior years by 33,000, 49,000, and 12,000 cy/yr, respectively. The increased bypassing rates constituted a direct benefit to the receiving beaches, which were located south of Oceanside Harbor, north and south of Agua Hedionda, and south of San Elio Lagoon. At Batiquitos, where lagoon restoration was undertaken during the pre-RBSP monitoring years, comparison of the historical and RBSP Monitoring Period bypass rates is not meaningful.
4. During the 2004 Monitoring Year, the volume of sediment in the San Diego County shorezone did not change appreciably, with gains and losses nearly balanced. In contrast, shoreline retreat predominated during the one-year period. This apparent paradox may be explained by the fact that sediment moved from the subaerial portion of the profile to the submerged portion, but remained within the shorezone. The predominance of shoreline retreat is attributable to three factors: (1) offshore dispersal of the RBSP fill material, (2) a lack of significant sediment input from rivers and streams, and (3) a lack of beach nourishment activities. The stability of the shorezone sediment volume is consistent with the fact that, in the absence of nourishment activities, major rainstorms, and severe storm events, significant quantities of material were neither added to nor removed from the coast.

5. Notwithstanding the shoreline retreat that occurred in 2003 and 2004, the beaches in the Oceanside and Mission Beach Littoral Cells were in substantially better condition at the end of the four-year RBSP Monitoring Period than at the beginning. Beach width and sediment volume both tended to increase over this period, with the greatest average shoreline advance (9 ft) occurring in the Mission Beach Cell and the greatest average shorezone volume gain (21 cy/ft) occurring in the Oceanside Cell. The primary reasons for this general improvement in the state of the coast appear to have been the RBSP beach fills, and the relatively mild wave conditions that prevailed throughout the period. In the Silver Strand Cell, beach width changes were mixed during the RBSP Monitoring Period but sediment volumes decreased. The volume losses in this cell correlate with the absence of non-RBSP nourishment activities during the period, which produced a net deficit relative to the historical average nourishment rate.

6. The performance of the individual RBSP fills varied considerably. At some sites, such as Del Mar, Moonlight, and South Carlsbad, the gains in shorezone volume that occurred at the time of fill placement were short-lived. At others, such as Mission Beach and Oceanside, the gains persisted through the time of the Fall 2004 Survey. In many cases, dispersal of the fill material was accompanied by shorezone volume gains on the downdrift beaches. The positive impact of the RBSP was most evident in the Oceanside-North Carlsbad area, where the monitoring data suggest that the Oceanside and North Carlsbad fills coalesced and dispersed laterally to benefit more than two miles of shoreline. A similar situation was observed in the Encinitas area involving the Batiquitos and Leucadia fills.

7. In a departure from prior annual reports, the lagoon analysis covers the three-year period between Fall 2001 and Fall 2004 rather than the entire RBSP Monitoring Period. This
change was instituted to reflect the conclusion that the RBSP fills exerted no material impact on the lagoon entrances prior to Fall 2001. The two jetty-stabilized lagoon entrances, Agua Hedionda and Batiquitos, remained open to the full range of tidal exchange with only minor variations in water depth following the RBSP (Fall 2001 to Fall 2004). Of the three unstabilized entrances, San Elijo closed on four occasions, San Dieguito on five, and Los Peñasquitos on seven. This pronounced variation in closure frequency resulted in the San Elijo entrance channel remaining open to tidal exchange for a greater percentage of time than the pre-RBSP average (91% vs. 43% historically), the San Dieguito channel remaining open for a lesser percentage of time (51% vs. 77% historically), and the Los Peñasquitos channel remaining open for a comparable percentage of the time (86% vs. 93% historically).

8. At San Elijo, the dredge rate following the RBSP (27,000 cy/yr) exceeded the historical average (15,000 cy/yr) by 80%. However, the higher rate is attributable, at least in part, to an increased level of maintenance made possible by additional funding. The post-RBSP dredge rate at Agua Hedionda (169,000 cy/yr) was within 10% of the pre-RBSP rate (182,000 cy/yr). At Batiquitos, where lagoon restoration was undertaken during the pre-RBSP monitoring years, comparison of the two dredge rates is not meaningful.
8. REFERENCES

Boudreau, R., 2003, personal communication, Moffatt and Nichol, Engineers, Long Beach, CA.

Dillingham, T., 2002, personal communication, California Department of Fish and Game, San Diego, CA.

Dillingham, T., 2004, personal communication, California Department of Fish and Game, San Diego, CA.

Elwany, M.H.S., 2003, personal communication, Coastal Environments, La Jolla, CA.

Elwany, M.H.S., 2004, personal communication, Coastal Environments, La Jolla, CA.

Frenken, J., 2002, personal communication, City of Encinitas, Encinitas, CA.

Gibson, D., 2005, personal communication, San Elijo Lagoon Conservancy, Encinitas, CA.

Keeley, B., 2003, personal communication, City of Encinitas, Encinitas, CA.

Keeley, B., 2004, personal communication, City of Encinitas, Encinitas, CA.

Rennie, M., 2003, personal communication, City of San Diego, San Diego, CA.

Sachs, S., 2003, personal communication, San Diego Association of Governments (SANDAG), San Diego, CA.

SANDAG Staff, 1999a, “Update of Opportunistic Sand Projects”, Memorandum to Shoreline Erosion Committee dated August 30, 1999, Sand Diego Association of Governments (SANDAG), San Diego, CA.

SANDAG Staff, 1999b, Memorandum to Shoreline Erosion Committee dated September 27, 1997, Sand Diego Association of Governments (SANDAG), San Diego, CA.

Weldon, K., 2005, personal communication, City of Encinitas, Encinitas, CA.
West, J., 2003, personal communication, Pacific Estuarine Research Laboratory (PERL), San Diego State University, San Diego, CA.

West, J., 2004, personal communication, PERL, San Diego State University, San Diego, CA.

