FIVE POINTS NEIGHBORHOOD/WASHINGTON STREET PEDESTRIAN AND MEDIAN IMPROVEMENTS

Smart Growth Incentive Program Grant Application
January 18, 2013

Civic San Diego
ATTACHMENT 3

ENTITLED DEVELOPMENT
<table>
<thead>
<tr>
<th>Project Name</th>
<th>Location</th>
<th>Land Uses</th>
<th>Units per Net Residential Acre</th>
<th>Total Number of Units</th>
<th>Number of Affordable Housing Units</th>
<th>Number of Affordable Housing Units Restricted to Very-low Income Residents</th>
<th>Estimated Gross Lease Area for Commercial/Office/Retail Uses</th>
<th>Estimated Construction Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Apartments</td>
<td>1825 Hancock Streets</td>
<td>Multi-family residential with community meeting space</td>
<td>54.5</td>
<td>85</td>
<td>84</td>
<td>9</td>
<td>0</td>
<td>June 2012</td>
</tr>
<tr>
<td>Loft2015</td>
<td>2015 Hancock Street</td>
<td>Multi-family residential</td>
<td>95.5</td>
<td>85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>June 2012</td>
</tr>
<tr>
<td>Mission Brewery Plaza</td>
<td>2120-2150 West Washington Street; 1775 Hancock Street</td>
<td>Mixed-use/ primarily office</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>Historic Middleton Square</td>
<td>1749 Hancock Street</td>
<td>Mixed-use/ office and retail</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16,162 SF</td>
<td>Historic building constructed in 1913; completion of adaptive reuse unknown</td>
</tr>
<tr>
<td>Fifty Seven Degrees Building</td>
<td>1735 Hancock Street</td>
<td>Retail/restaurant/wine storage</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15,134 SF</td>
<td>Unknown</td>
</tr>
<tr>
<td>Fed Ex Building</td>
<td>1764 San Diego Avenue</td>
<td>Office and commercial services/multi-tenant including Fed Ex and Legal Aid Society of San Diego</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23,428 SF</td>
<td>2003</td>
</tr>
<tr>
<td>Office Building</td>
<td>1899 McKee Street</td>
<td>Office</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11,098 SF</td>
<td>1987</td>
</tr>
<tr>
<td>The Charmer</td>
<td>3625 India Street</td>
<td>Mixed-use/ residential and commercial</td>
<td>27.5</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>5,000 SF</td>
<td>2011</td>
</tr>
</tbody>
</table>
ATTACHMENT 4

PHOTOGRAPHS OF EXISTING CONDITIONS AND PROJECT AREA
Five Points/Washington Street Pedestrian and Median Improvements

^ Washington Street/San Diego Avenue Intersection – Existing Conditions (looking east)

^ Washington Street/San Diego Avenue Intersection – Missing Curb Ramp (looking west)

^ Washington Street/Hancock Street Intersection – Existing Conditions (looking east)

^ Washington Street/Hancock Street Intersection – Missing Curb Ramp (looking northeast)
Five Points/Washington Street Pedestrian and Median Improvements

< Washington Street Trolley Station (looking north)

Washington Street Median between San Diego Avenue and India Street – Existing Conditions (looking east)

< Washington Street Sidewalks underneath Interstate 5 – Existing Conditions (looking west)
Five Points/Washington Street Pedestrian and Median Improvements

- Five Points Commercial District – India Street (looking south)
- New Residential Development on Project East Side – The Charmer (India and Chalmers)
- Five Points Commercial District – India Street (looking north)
- New Residential Development on Project West Side – Mission Apartments (Hancock and Washington Street Trolley Station)
ATTACHMENT 5

PROJECT

CONSTRUCTION PLANS
PLANTING NOTES

ALL LANDSCAPES SHALL BE DONE IN ACCORDANCE WITH THE GENERAL PROMINENT AND THE APPLICABLE PARTS OF SECTION 44 AND 46 OF THE CITY OF SAN DIEGO STANDARD SPECIFICATIONS, "GREEN BOOK" AND THE "WHITEBOOK," THE CITY OF SAN DIEGO STANDARD DESIGN. AS WELL AS THE FOLLOWING:

1. THE PLANTING PLANS ARE DRAWN, WITH MAJOR ALIGNMENTS IN PLANT LOCATIONS AND TYPE MAY BE MADE AT THE DISCRETION OF THE RESIDENT ENGINEER.
2. PLANT QUANTITIES AND AREAS SHOWN ON LEGENDS ARE FOR CONTRACTORS CONVENIENCE IN ESTIMATING ONLY, CONTRACTORS IS RESPONSIBLE FOR PROHIBING PLANT MATERIAL TO BE Laid, ALL AREAS SHOWN ON PLANS.
3. DO NOT DAMAGE PLANT ROOTTAIL DURING TRANSPORTATION OR PLANTING PROCESS.
4. ALL PLANT MATERIAL SHALL BE SUBJECT TO THE APPROVAL OF THE RESIDENT ENGINEER AND REPLACED UPON REQUEST UNTIL PROJECT ACCEPTANCE.
5. RESIDENT ENGINEER SHALL APPROVE FINAL PLACEMENT OF ALL SHOVELS PRIOR TO PLANTING.

ALL PLANTS PLANTED FROM CONTAINERS SHALL HAVE THEIR ROOTBALLS SORED WITH A SHARP TOOL TO A DEPTH OF ONE INCH IN THREE CONTINUOUS INCREMENTS AT LOCATIONS SHOWN AROUND THE ROOTTAIL PRIOR TO PLACING PLANT IN HOLE. SUBSTATION EDITION OF ROOTTAIL.

ALL PLANTING AREAS SHALL RECEIVE A TWO (2) INCH LAYER OF TYPICAL MULCH. FOR BARK DYES THE SAG OF THE PLANT BARK MULCH SHALL BE COMPARED WHIT MORE DRYED ON OR FOR BARK, PRODUCT SHALL BE DRY. BARKED MULCH AND SOLIDIFIED MATERIALS. PARCEL SIZE SHALL HAVE A MINIMUM RANGE FROM 10 TO 30 WITH 100 PERCENT OF LONGER COLOR SHALL BE RED BARKED MULCH. SUBMIT TWO SAMPLES FOR APPROVAL BY THE RESIDENT ENGINEER PRIOR TO INSTALLATION NO MULCH WITHIN 12 TIMES TREE SIZE.

IT IS THE CONTRACTOR'S RESPONSIBILITY TO LOCATE ALL PLANT MATERIALS SPECIFIED IN THE CONTRACT DRAWINGS WITHIN ONE (1) WEEK AFTER AWARD OF CONTRACT AND TO NOTIFY THE ENGINEER IMMEDIATELY OF ANY ABNORMALITIES OR ISSUES IN THE SUBMITTAL IS REQUESTED BY THE CONTRACTOR AFTER THE INITIAL TWO WEEK TIME FRAME, THE CONTRACTOR WILL BE HELD RESPONSIBLE FOR ALL ADDITIONAL COSTS ASSOCIATED WITH THE USE OF MATERIALS AND SUBSTITUTION OF PLANTS SHOWN IN CONTRACT WILL BE DEEMED UNPERMISSIBLE UNLESS SUBMITTED TO THE RESIDENT ENGINEER FOR REVIEW PRIOR TO SHIPMENT TO THE PROJECT SITE.

SOIL SHALL BE FREE FROM ROCKS OR ROCKY DEBRIS AND SHALL BE OF A LOAM CHARACTERISTICS, FERTILE AND FRAGILE.

PLANT HOLES SHALL BE DUG TO SIZE AS INDICATED IN THE PLANS (SEE E4TH OWM ESQ-R)

SOIL PREPARATION AND TINE GRADING SHALL BE COMPLETED PRIOR TO PLANTING ALL LANDSCAPES TO BE TREATED WITH A PRE-EMERGENT CHEMICALS. CHEMICALS ARE TO BE APPLIED BY A LICENSED PEST CONTROL. ADJUTANT TREATMENT SHALL BE APPLIED AT THE FOLLOWING TIMES DURING THE CONTRACTED PERIOD OF THE END OF PLANT ESTABLISHMENT PERIOD (1) AT THE END OF PLANT ESTABLISHMENT PERIOD (2) AS NEEDED.

STIMULANT SHALL BE APPLIED AT PLANTING AND SHALL BE VETERINARY MANUFACTURED BY OIL-LIKE OILS OF APPROVED PLANTING POST-PLANT TREATMENT TABLES SHALL BE BLOW ECO-LIKE OILS OF APPROVED PLANTING POST-PLANT TREATMENT TABLES SHALL BE IN COMPLIED MANUFACTURED AND REFRESHED AS NEEDED. OIL-LIKE OILS ARE MANUFACTURED AS REQUIRED. OIL-LIKE OILS ARE MANUFACTURED AS REQUIRED. OIL-LIKE OILS ARE MANUFACTURED AS REQUIRED.

SHRUBS IN HOLES WILL NOT BE PERMITTED. ALL EXCESS SOIL AND DEBRIS SHALL BE REMOVED OF THE SITE BEFORE THE USE OF THE CONTRACTOR'S MATERIALS. THE SITE SHALL BE LEFT NEAT AND CLEAN TO THE APPROVAL OF THE RESIDENT ENGINEER.

AT NO TIME MAY PLANTS BE PLANTED IN WET OR IN THE PROXIMITY TO THE GRAVEL AND AN IN SITU DUG IN ADAPTED SOIL FROM THE AWAY FROM THE DISTANCE OF THE HOLES.

WATERING IMMEDIATELY AFTER PLANTING APPLY WATER TO EACH HOLE OR COVER WITH A MODERATE STREAM IN THE PLANTING HOLE USING, THE MATERIAL HOLDS THE ROOTS IS COMPACTED SOCKETED FROM THE BOTTOM OF THE HOLE TO THE TOP OF THE DRIPPING.

APPLY WATER IN SUITABLE QUANTITIES AND AS OFTEN AS SEASONAL CONDITIONS REQUIRE TO KEEP THE PLANTED MATERIALS MOIST AT ALL TIMES. ABBY WAYS BELOW THE ROOT SYSTEM OF PLANTS. UNTIL PROJECT ACCEPTED BY THE CITY.
WASHINGTON STREET AT INDIA STREET MEDIAN IMPROVEMENTS

LANDSCAPE PLAN

FOR LEGENDS SEE SHEET 3

WASHINGTON STREET

SAN DIEGO AVE

INDIA ST

LANDSCAPE PLANS ARE DIAGRAMMATIC ONLY

NOTE: PLANS FOR THE CONSTRUCTION OF
WASHINGTON STREET AT INDIA STREET MEDIAN IMPROVEMENTS
LANDSCAPE PLAN

CITY OF SAN DIEGO, CALIFORNIA
ENGINEERING AND CAPITAL PROJECTS DEPARTMENT

SHEET 4 OF 5 SHEETS

L-2
CONSTRUCTION NOTES

1. PULLBOXES AND CONDUIT
 a. PULLBOXES ARE 888, UNLESS OTHERWISE NOTED ON THIS PLAN.
 b. ALL CONDUIT MUST BE 988 BELOW THE PAVEMENT SURFACE OR 288 BELOW THE BOTTOM OF THE PAVEMENT, whichever is greater.
 c. CONDUIT SHALL BE 288 DIAMETER, UNLESS OTHERWISE NOTED ON THIS PLAN.
 d. ALL STREET LIGHT POLE FOUNDATIONS SHALL HAVE A 288 CONDUIT INSTALLED TO AN ADJACENT ADJACENT NO. 6 PULLBOX.

2. CONTRACTOR SHALL ON SITE, ALL EXISTING ELECTRICAL COMPONENTS NOT INCLUDED SUCH AS LAMPS, BALLASTS, TUBE HOLDERS, AND FIXTURES AND DELIVER TO THE CITY’S CHALLIN MAINTENANCE AREA AS DIRECTED BY THE RESIDENT ENGINEER AT 619-687-0897.

3. LOCATION, DISTANCES AND INSTALLATION OF STREET LIGHT EQUIPMENT, TRAFFIC SIGNALS, TRAFFIC STRIPING, PAVEMENT AND CURB MARKINGS.
 a. THE CONTRACTOR WITH THE APPROVAL OF THE CITY RESIDENT ENGINEER IS RESPONSIBLE FOR LOCATING, MARKING THE LAYOUT, AND INSTALLATION OF ALL LIGHTING EQUIPMENT.
 b. THE CONTRACTOR WITH THE APPROVAL OF THE CITY’S DESIGNATED TRAFFIC ENGINEER IS RESPONSIBLE FOR LOCATING, MARKING THE LAYOUT AND INSTALLATION OF ALL TRAFFIC SIGNS, TRAFFIC STRIPING, PAVEMENT, AND CURB MARKINGS PER APPROVED SHOP DRAWINGS.
 c. THE CONTRACTOR SHALL OBTAIN THE APPROVALS FOR THE ITEMS NOTED IN 4a AND 4b PRIOR TO INSTALLATION.
 d. THE CONTRACTOR SHALL PERFORM ANY WORKING REMOVAL LESS THAN 6 WORKING DAYS AFTER LOCATION APPROVAL.

4. CONTRACTOR SHALL PROVIDE AND INSTALL ALL NEW ELECTRICAL COMPONENTS, CORDUETY CONDUCTORS, AND MOUNTING HARDWARE AS SHOWN OR IMPLIED BY THESE PLANS.

5. CONTRACTOR SHALL ENSURE THAT THE EXISTING SYSTEM AND PLANTS DISTURBED DUE TO CONSTRUCTION BY INSTALLING IRRIGATION SYSTEM COMPONENTS AND PLANTS TO MATCH EXISTING.

CONSTRUCTION NOTES, CONT.

1. REMOVE AND SALVAGE EXISTING PEDESTRIAN PUSHBUTTONS TOTAL NO.
2. FURNISH AND INSTALL 288 WIFI PUSHBUTTON WITH NAVIGATION, AGGREGATE PEDESTRIAN SIGNAL CONSTRUCTION TO INSTALL COMPLETE ASSEMBLY INCLUDING PROGRAMMING OF THE PEDESTRIAN PUSHBUTTON AND CENTRAL CONTROL UNIT ITSELF.
3. REMOVE BY SAWING/SHORTENING, ALL CONFLICTING STRIPING AND PAVEMENT LEGAL MARKINGS.
4. AS SHOWN, INSTALL 188 WIDE CROSSWALK OR LINE LIMIT USING 128 WHITE THERMOPLASTIC LINES PER STATE STANDARD PLAN 9-246.
5. REMOVE AND SALVAGE EXISTING PEDESTRIAN PUSH BUTTON POLE AND EQUIPMENT.
6. UPGRADE STREET LIGHT TO INDUCTION.

PLANS FOR THE CONSTRUCTION OF FIVE POINTS NEIGHBORHOOD PEDESTRIAN IMPROVEMENTS

Trafic Signal Modification and Pedestrian Crossing System at Washington and Hancock St.

CITY OF SAN DIEGO, CALIFORNIA

ENGINEER: WARD ENSOR, P.E.

PLANS CHECKED: J. M. WARD

FIVE POINTS NEIGHBORHOOD

STREET: WASHINGTON ST.

SCALE: 1" = 20'
STORM DRAIN INLET PROTECTION

STABILIZED CONSTRUCTION ENTRANCE/EXIT

SILT FENCE

FIBER ROLL

PLANS FOR THE CONSTRUCTION OF WASHINGTON STREET AT INDIA STREET MEDIAN IMPROVEMENTS & FIVE POINTS NEIGHBORHOOD PEDESTRIAN IMPROVEMENTS

G-2
NOTES:
1. THE INFORMATION ON THIS SHEET IS INTENDED TO BE USED AS A GUIDELINE FOR THE CONTRACTOR AND SUBCONTRACTORS TO INSTALL WATER POLLUTION CONTROL DEVICES AT SIMILAR LOCATIONS THROUGHOUT THE PROJECT SITE. THIS SHEET IS TO BE USED IN CONJUNCTION WITH THE NAVIGATION SECTION OF THE STOPP/WATER POLLUTION CONTROL PLAN FOR THE WATER POLLUTION CONTROL SPECIFICATIONS.
2. INLET PROTECTION IS REQUIRED AT ALL STORM SEWER RECEIVING RUNOFF FROM OBSTRADED ROOF AREAS.
3. CONTRACTOR TO UPDATE PREVUE SHEET AS NECESSARY.
4. THE INFORMATION ON THE SHEET IS ACCURATE FOR WATER POLLUTION CONTROL PURPOSES ONLY.

W. WASHINGTON STREET
FULL DEPTH AC
30' 18" RCP AT 5 DEGREE BENDS
ABANDON AND FILL 30' EXIST 18" RCP
CURB INLET TYPE B WITH 8' WING
CURB RAMP TYPE A
16' 30" RCP
REMOVE STRUCTURE COMPLETELY AND FILL
CATCH BASIN TYPE F
ATTACHMENT 6

SCOPE OF WORK,
SCHEDULE AND BUDGET
SANDAG SMART GROWTH INCENTIVE GRANT PROGRAM SCOPE OF WORK, SCHEDULE, AND BUDGET

Project Title: Five Points Neighborhood/Washington Street Pedestrian and Median Improvements

Project Location/Limits:
Washington Street between Hancock Street and India Street

Project Description:
This project will provide enhanced and improved safety, walkability and transit access for pedestrians through construction of five (5) accessible curb ramps and two (2) popouts, installation of four (4) visual countdown/audible signals and various directional signage, and replacement/relocation of litter receptacles at the Hancock Street and San Diego Avenue intersections along Washington Street to connect the nearby trolley station and bus routes to the Five Points commercial district and residential areas on both sides of Interstate 5. Median improvements on Washington between San Diego Avenue and India Street, including landscaping, irrigation, curb, a neighborhood sign and improved crosswalk landing, will enhance the street environment for pedestrians while serving as a traffic calming element along the busy street.

Contract No.:
SANDAG Use Only

Project (TNet) No.:
SANDAG Use Only

<table>
<thead>
<tr>
<th>Task No.</th>
<th>Task Description</th>
<th>Deliverable/s</th>
<th>Start Date</th>
<th>Completion Date</th>
<th>SANDAG Funds</th>
<th>Matching Funds</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preliminary Engineering</td>
<td></td>
<td>Mar-04</td>
<td>Aug-09</td>
<td>$0</td>
<td>$69,487</td>
<td>$69,487</td>
</tr>
<tr>
<td>2</td>
<td>Design</td>
<td>90% Design Plans</td>
<td>Mar-04</td>
<td>Aug-12</td>
<td>$0</td>
<td>$229,760</td>
<td>$229,760</td>
</tr>
<tr>
<td>3</td>
<td>Environmental Clearance</td>
<td></td>
<td>Aug-09</td>
<td>Sep-13</td>
<td>$0</td>
<td>$6,000</td>
<td>$6,000</td>
</tr>
<tr>
<td>4</td>
<td>Data Collection</td>
<td>Bicycle/Pedestrian Demand Data</td>
<td>Sep-13</td>
<td>Oct-13</td>
<td>$5,000</td>
<td>$0</td>
<td>$5,000</td>
</tr>
<tr>
<td>5</td>
<td>Final Design</td>
<td>100% Plans/Specs</td>
<td>Sep-13</td>
<td>Mar-14</td>
<td>$8,115</td>
<td>$23,870</td>
<td>$31,985</td>
</tr>
<tr>
<td>6</td>
<td>Advertise/Bid/Award</td>
<td>Award Contract</td>
<td>Apr-14</td>
<td>Aug-14</td>
<td>$7,200</td>
<td>$4,800</td>
<td>$12,000</td>
</tr>
<tr>
<td>7</td>
<td>Project Construction (plus Contigency)</td>
<td>Completed Project</td>
<td>Sep-14</td>
<td>Feb-15</td>
<td>$300,000</td>
<td>$86,293</td>
<td>$386,293</td>
</tr>
<tr>
<td>8</td>
<td>Construction Management</td>
<td>Completed Project</td>
<td>Sep-14</td>
<td>Feb-15</td>
<td>$35,685</td>
<td>$23,790</td>
<td>$59,475</td>
</tr>
<tr>
<td>9</td>
<td>Project Closeout</td>
<td>Completed Project</td>
<td>Feb-15</td>
<td>Feb-16</td>
<td>$4,000</td>
<td>$6,000</td>
<td>$10,000</td>
</tr>
</tbody>
</table>

TOTALS | $360,000 | $450,000 | $810,000 |

PROJECT REVENUES

<table>
<thead>
<tr>
<th>Source</th>
<th>FY 2013</th>
<th>FY 2014</th>
<th>FY 2015</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGIP Grant</td>
<td>$0</td>
<td>$17,435</td>
<td>$342,565</td>
<td>$360,000</td>
</tr>
<tr>
<td>Other v</td>
<td>$304,247</td>
<td>$27,750</td>
<td>$118,003</td>
<td>$450,000</td>
</tr>
<tr>
<td>City of San Diego Redevelopment and TransNet</td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>$304,247</td>
<td>$45,185</td>
<td>$460,568</td>
<td>$810,000</td>
</tr>
</tbody>
</table>
ATTACHMENT 7

PROJECT STUDY REPORT
ACKNOWLEDGEMENTS

The Five Points Commercial Neighborhood Parking and Circulation Design project final report represents the combined efforts of the Project Team and the associated residents, business owners and interested community members. Through a series of project team and community meetings, the elements of the final report were refined.

PROJECT TEAM

Uptown Partnership, Inc.
Carol Schultz, Executive Director
Janet Fairbanks, Project Manager

KOA Corporation
Joe De La Garza, Project Manager
Ryan Zellers, Project Engineer
Seth Torma, Project Planner

DeLorenzo, Inc.
Nick DeLorenzo, Urban Designer
Kathleen Ferrier, Public Outreach

FIVE POINTS ADVISORY COMMITTEE

Zach Adams
Sean Ashdown
John Eisenhart
Andy Hamilton
Dennis Larson
Thomas Littell
Jackie McGurk
Jim Mellos
Jennifer Pesqueira
Richard Stegner
Su-Mei Yu
Bill Zillich

PUBLIC AGENCY MEMBERS

Denis Desmond, San Diego MTS
Stephan Vance, SANDAG

CITY OF SAN DIEGO STAFF

Doran Aivati
Transportation Engineering
Operations Division

Julio Fuentes
Transportation Engineering
Operations Division

Lydia Goularte-Ruiz
Redevelopment – North Bay
Redevelopment Project Area

Marlon Pangilinan
Planning Department

Oscar Valdevieso
Transportation Engineering
Operations Division
Table of Contents

Chapter 1 | The Project
- Project History ... 1
- Project Goals .. 2
- Study Process Overview .. 2
- Study Area ... 3

Chapter 2 | Methodologies
- Study Scenarios .. 5
- Analysis Methodologies ... 5
 - Roadway Segment Capacity Analysis 5
 - Intersection Capacity Analysis 5
 - Signalized Intersections .. 5
 - All-Way Stop-Controlled (AWSC) Intersections 6
 - Two-Way Stop-Controlled (TWSC) Intersections 6
 - Analysis of Significance .. 6

Chapter 3 | Existing Conditions (2008)
- Traffic Counts .. 7
- Study Segments .. 7
- Analysis of Existing Conditions 8
- Existing Circulation Issues ... 12
 - Parking Circulation .. 12
 - Commuter Circulation .. 12

Chapter 4 | Circulation Alternative Conditions (2008)
- General Project Improvements 15
- Circulation Alternatives .. 15
 - Circulation Alternative 1 ... 15
 - Circulation Alternative 2 ... 16
 - Circulation Alternative 3 .. 17
- Trip Distribution and Assignment 17
- Alternative Comparison .. 17
 - Segment Operations .. 17
 - Intersection Operations .. 19
 - Parking ... 19
- Preferred Alternative .. 28

Chapter 5 | Horizon Year Conditions (2030)
- Horizon Year Traffic Volumes 29
- Horizon Year Circulation Network 29

Chapter 6 | Pedestrians, Bicycles & Transit
- Background ... 37
- Pedestrian Circulation .. 37
 - Pedestrian Study Area .. 37
 - Pedestrian Land Use Attractors and Generators 37
 - Pedestrian Barriers .. 37
 - Linkage and Connectivity ... 37
 - Existing Pedestrian Facilities 40
 - Existing Pedestrian Deficiencies 40
 - Walking Distances .. 42
 - Existing Bicycle Facilities .. 43
 - Bicycle Study Area .. 43
 - Existing Transit Facilities ... 45
 - Trolley Facilities .. 45
 - Bus Facilities .. 46

Chapter 7 | Collision History
- Methodology ... 47
Collision Data Analysis ... 47
Bicycles and Pedestrians ... 47
Speeding .. 48

CHAPTER 8 | Urban Design Components 49
Intersection of Washington and Hancock Streets 50
Hardscape Improvements .. 50
Streetscape Improvements ... 51
Underpass at Interstate 5 ... 51
Streetscape Improvements ... 51
‘Y’ Intersection at India Street and San Diego Avenue 52
Hardscape Improvements .. 52
Streetscape Improvements ... 53
Landscape Improvements ... 53
Intersection of Washington and India Streets 53
Hardscape Improvements .. 53
Other Improvements ... 54
Winder Street and Columbia Street 54
Washington Street, East of India Street 54
Bicycle Amenities ... 54

CHAPTER 9 | Cost Estimates & Funding 55
Cost Estimates ... 55
Phase One ... 55
Phase Two .. 55
Phase Three .. 55
Funding ... 57
Review of Existing Federal, State and Local Sources ... 57
Federal Programs .. 57
State Programs .. 59
Local Mechanisms .. 60
Funding Recommendations .. 60

CHAPTER 10 | Public Outreach ... 61
CHAPTER 11 | Preferred Alternative & Recommendations 63
Recommendations ... 63
Phase One .. 64
Phase Two .. 64
Phase Three ... 64

FIGURES

1-1 Project Study Area ... 4
3-1 Existing Circulation Network 9
3-2 Existing Road Classifications and Segment Volumes 10
3-3 Existing AM/PM Peak Hour Intersection Volumes 11
3-4 Existing Parking Areas and Vehicle Circulation Pattern .. 13
3-5 Existing Speeds and Commuting Vehicle 14

4-1 Concept Alternative 1 .. 16
4-2 Concept Alternative 2 .. 16
4-3 Concept Alternative 3 .. 17
4-4 Circulation Alternative 1: Proposed Configuration 21
4-5 Circulation Alternative 1: AM/PM Peak Hour 22

4-6 Circulation Alternative 2: Proposed Configuration 23
4-7 Circulation Alternative 2: AM/PM Peak Hour 24

4-8 Circulation Alternative 3: Proposed Configuration 25
4-9 Circulation Alternative 3: Road Classification and 26

4-10 Circulation Alternative 3: AM/PM Peak Hour 27

5-1 Horizon Year Road Classifications and Segment Volumes 31
5-2 Horizon Year AM/PM Peak Hour Intersection Volumes 32
5-3 Circulation Alternative 1: Horizon Year AM/PM Peak 33

5-4 Circulation Alternative 2: Horizon Year AM/PM Peak 34

5-5 Circulation Alternative 3: Horizon Year Road 35

5-6 Circulation Alternative 3: Horizon Year AM/PM Peak 36

6-1 Five Minute Walking Radius 37
6-2 Existing Land Uses .. 38
6-3 Pedestrian Barriers and Connections 39
6-4 Existing Pedestrian Facilities & Deficiencies 41
6-5 Study Area Subareas .. 42
6-6 Five Mile Area Major Bicycle Trip Attractors 44
6-7 Existing Bike Circulation Network 44
6-8 Midway/Pacific Highway Corridor Community Plan ... 45
FIVE POINTS COMMERCIAL NEIGHBORHOOD PARKING AND CIRCULATION DESIGN

6-9 Uptown Community Plan .. 45
6-10 Bus Route 10 ... 46
6-11 Existing Transit Facilities .. 46
7-1 Collision Data (April 2004 to April 2009) 48
8-1 Draft Proposed Concept ... 49
8-2 Plan View Concept of Enhanced Paving, Curb Pop-Outs.... 50
8-3 Street View Concept of Enhanced Paving and Decorative ... 50
8-4 Underpass Mural Concept .. 52
8-5 ‘Y’ Intersection Concept Rendering 52
8-6 Example Bus Shelter ... 53
8-7 Winder Street and Columbia Street Median 54
9-1 Cost Estimate Areas .. 56

TABLES

3-1 Existing Roadway Segment Conditions 8
3-2 Existing Intersection Conditions 8
4-1 Opening Day Roadway Segment Condition (2008) 18
4-2 Opening Day Intersection Conditions (2008) 19
4-3 Net Parking Changes .. 20
5-1 Horizon Year Roadway Segment Conditions (2030) 29
5-2 Horizon Year Intersection Conditions (2030) 30
6-1 Walking Distances (feet) .. 42
7-1 Collision Summary .. 47
9-1 Planning Level Cost Estimates by Area 55
11-1 Summary of Roadway Segment Conditions – No 63
Build / Preferred Circulation Alternative 2
11-2 Summary of Intersection Conditions – Preferred 64
Circulation Alternative 2

APPENDICES

Appendix A Level of Service Concepts, Analysis
Methodologies, Standards of Significance
Appendix B Traffic Count Data
Appendix C Peak Hour Intersection Analysis Worksheets
Existing Conditions
Appendix D Peak Hour Intersection Analysis Worksheets
Future Conditions
Appendix E Planning Level Cost Estimates
This page intentionally left blank
CHAPTER 1

THE PROJECT

PROJECT HISTORY

There have been previous evaluations and improvements in the Five Points Commercial Neighborhood. The most recent evaluation was done in 2007 and resulted in numerous recommendations and improvements to the area. As part of the 2007 study, public workshops were held, parking was evaluated and the City of San Diego traffic engineering staff worked collaboratively with Uptown Partnership, Inc. to implement some near-term improvements.

The following are the near-term projects, outlined in the 2007 study, that have been completed:

- Added 25-plus metered spaces on San Diego Avenue and India Street
- Installed electronic “V-calm” sign on San Diego Avenue to alert drivers of their speed
- Installed pedestrian-countdown signals at the intersections of Washington Street and India Street, Washington Street and Hancock Street, and Washington Street and San Diego Avenue
- Upgraded neighborhood signs and curb painting

Additional recommendations from the 2007 evaluation included additional study of the I-5 underpass upgrades, diagonal parking on the west side of San Diego Avenue, pedestrian pop-outs at the Washington Street intersections, reducing the width of travel lanes, and evaluation of a one-way circulation loop proposed by the community.
These recommendations have led to this more detailed study of the Five Points neighborhood.

PROJECT GOALS

The Five Points Neighborhood Parking and Circulation Design project includes an evaluation and detailed traffic and mobility analysis of the Five Points neighborhood. The neighborhood is located in the City of San Diego in the western portion of the Mission Hills community and is within the City of San Diego’s Uptown Community Planning area. The project conceptualizes traffic calming, circulation, and aesthetic improvements to the Five Points area and focuses on creating opportunities for pedestrian enhancements, slowing vehicular speeds around the neighborhood, and evaluating traffic circulation alternatives to minimize commercial bound traffic that circulates in the residential areas while looking for parking. The primary project goals include:

- Reducing parking and traffic impacts
- Improving traffic circulation and moderating vehicle speeds
- Promoting pedestrian and bicycle access
- Enhancing economic vitality and neighborhood appearance

STUDY PROCESS OVERVIEW

A number of meetings were held with the Five Points Advisory Committee to help guide the development of circulation and traffic calming improvement concepts. Once initial concepts were developed, a community meeting was held in the Five Points area to discuss and gather feedback. Then a draft report was prepared that incorporated the community’s feedback and fully analyzed the selected alternatives. The draft report was reviewed by the Five Points Advisory Committee and the City of San Diego. A second public meeting was held to present the proposed alternatives, the results of the traffic analysis, and to gather feedback on the proposed circulation design and sidewalk and landscaping improvements. One alternative gathered the most support from the project stakeholders and was carried forward as the preferred alternative. The preferred alternative and study results were then presented to both the Advisory Committee and the Uptown Partnership, Inc. Board of Directors and a final report was prepared.
STUDY AREA

The project study area includes Washington Street from the trolley station west of Hancock Street to University Avenue, India Street from Vine Street to Washington Street, and San Diego Avenue from India Street to Washington Street. Also included in the study area are specific neighborhood roads near the commercial district, such as Andrews Street, Winder Street, and Columbia Street. Interstate 5 provides regional access to the project area via ramps linking with Washington Street. Figure 1-1 shows the project vicinity and study area.
ROADWAY SEGMENTS
A. Washington Street (between San Diego Ave. & India St.)
B. Washington Street (east of India St.)
C. India Street (bet. Winder St. & Washington St.)
D. India Street (south of Chalmers St.)
E. Chalmers Street (bet. India St. & Columbia St.)
F. Winder Street (bet. India St. & Columbia St.)
G. Columbia Street (bet. Andrews St. & Winder St.)
H. Columbia Street (bet. Winder St. & Chalmers St.)
I. San Diego Avenue (bet. Washington St. & India St.)

INTERSECTIONS
1. Hancock St. / Washington St.
2. San Diego Ave. / Washington St.
3. India St. / Washington St. / Andrews St.
4. India St. / Winder St.
5. Columbia St. / Andrews St.
6. Columbia St. / Winder St.
7. India St. / San Diego Ave. (possible future intersection)
CHAPTER 2

METHODOLOGIES

This chapter documents the methodologies and assumptions used to conduct the traffic impact analysis for the improvement alternatives. The study methodology and analysis is conducted in accordance with the City of San Diego Traffic Impact Study Manual (1998) and the City of San Diego Significance Determination Thresholds Development Services Department (2007). These guidelines are used to determine the project’s potential significant impacts.

STUDY SCENARIOS

This report presents an analysis of the following analysis scenarios:

- Existing Conditions (2008)
- Horizon Year Conditions (2030)

ANALYSIS METHODOLOGIES

Street system operating conditions are typically described in terms of “level of service.” Level of service is a report-card scale used to indicate the quality of traffic flow on roadway segments and at intersections. Level of service (LOS) ranges from LOS A (free flow, little congestion) to LOS F (forced flow, extreme congestion). A more detailed description of the concepts described in this section is provided in Appendix A of this document. The following analysis methods are used in this study.

Roadway Segment Capacity Analysis

The City of San Diego has published daily traffic volume standards for roadways within its jurisdiction. To determine service levels on study area roadway segments, we compared the appropriate average daily traffic thresholds for level of service to the daily capacity of the study area roadway segments and the existing and future volumes in the study area. By dividing the volumes by the capacities we get a volume over capacity ratio (V/C) that correlates to a specific LOS. The thresholds for determining level of service used in this analysis are summarized in Appendix A.

Intersection Capacity Analysis

The analysis of peak hour intersection performance was conducted using the Traffix analysis software program, which uses methodologies defined in the 2000 Highway Capacity Manual (HCM) to calculate results. LOS for intersections is determined by control delay. Control delay is defined as the total elapsed time from when a vehicle stops at the end of a queue to the time the vehicle departs from the stop line. The total elapsed time includes the time required for the vehicle to travel from the last-in-queue position to the first-in-queue position, including deceleration of vehicles from free-flow speed to the speed of vehicles in the queue. The software calculates the average expected delay per vehicle at an intersection, measured in seconds. The reported delay then correlates to a resulting LOS. Appendix A lists the HCM delay/LOS criteria for both signalized and unsignalized intersections.

Signalized Intersections

The HCM analysis methodology for evaluating signalized intersections is based on the “operational analysis” procedure. This technique uses 1,900 passenger cars per hour of green per lane (pcphgl) as the maximum saturation flow of a single lane at an intersection. This saturation flow rate is adjusted to account for lane width, on-street parking, conflicting pedestrian flow, traffic composition, (e.g., the percentage of vehicles that are trucks) and shared lane movements (e.g., through and right-turn movements from the same lane). Average control delay is calculated by taking a volume-weighted average of all the delays for all vehicles entering the intersection.
All-Way Stop-Controlled (AWSC) Intersections

The HCM analysis methodology for evaluating all-way stop-controlled intersections is based on the degree of conflict for each independent approach created by the opposing approach and each conflicting approach. LOS for AWSC intersections is also based on the average control delay. However, AWSC intersections have different threshold values than those applied to signalized intersections. This is based on the rationale that drivers expect AWSC intersections to carry lower traffic volumes than at signalized intersections. Therefore, a higher level of delay is acceptable at a signalized intersection for the same LOS.

Two-Way Stop-Controlled (TWSC) Intersections

The HCM analysis methodology for evaluating two-way Stop-controlled (TWSC) intersections is based on gap acceptance and conflicting traffic for vehicles stopped on the minor-street approaches. The critical gap (or minimum gap that would be acceptable) is defined as the minimum time interval in the major-street traffic stream that allows intersection entry for one minor-street vehicle. Average control delay and LOS for the “worst approach” are reported. Level of service is not defined for the intersection as a whole.

Analysis of Significance

To determine direct project impacts, the City of San Diego has developed a series of thresholds based on allowable increases in volume-to-capacity ratios that become more stringent as level of service worsens. The City of San Diego’s January 1, 2007 significance thresholds are used. Appendix A summarizes these thresholds. Where roadway segments and intersections operate at LOS D or better impacts are not considered significant.
CHAPTER 3

EXISTING CONDITIONS (2008)

TRAFFIC COUNTS

The intersection turning movement counts were conducted during the weekday morning peak period from 7:00 AM to 9:00 AM and during the weekday evening peak period from 4:00 PM to 6:00 PM in November 2008. Average daily traffic volumes were obtained through machine data collection.

STUDY SEGMENTS

The principal roadways in the study area are described briefly below. The description includes the physical characteristics, adjacent land uses, and classification of these roadways.

Washington Street runs east/west connecting the Uptown community to Interstate 5. It functions as a 4-lane major with two lanes in each direction. The roadway has a paved roadway width of approximately 70 feet with a raised median. East of India Street, the roadway has a bike lane that ends east of the India Street intersection and limited parking on the eastbound side. The segment between India Street and San Diego Avenue has sidewalks and bus stops on both sides as well as some parallel parking in the westbound direction. The roadway provides driveway access to commercial properties between India Street and San Diego Avenue; the roadway does not provide access east of India Street. The Uptown Community Plan recommends an ultimate classification of 4-lane Major.

Andrews Street runs east/west within the study area. The roadway is one-way in the eastbound direction from Washington Street to Columbia Street; thereafter the road becomes two-way. The roadway has no painted median and has a roadway width of approximately 30 feet within the study area. The road has sidewalks and parallel parking on one side. The road provides driveway access to fronting commercial and residential properties.

Winder Street runs east/west within the study area. The roadway functions as a 2-lane Collector with no painted median and has a roadway width of approximately 26 to 54 feet within the study area. The road has sidewalks on both sides with parallel and diagonal parking. The roadway provides driveway access to fronting commercial and residential properties.

Chalmers Street runs east/west within the study area. The roadway functions as a 2-lane Sub-Collector with paved roadway width of approximately 54 feet within the study area. The road has sidewalks and parallel parking on both sides within the study area. The roadway provides driveway access to fronting commercial and residential properties.

India Street runs north/south within the study area. The roadway is one-way in the northbound direction until the intersection of Winder Street, where it becomes two-way until its terminus at Washington Street. The roadway functions as a 2-lane Collector between Washington Street and San Diego Avenue. South of San Diego Avenue, the roadway functions as one-way half of a 4-lane major (2 lanes wide). The paved roadway width ranging from 75 feet south of Chalmers Street to 26 feet from Chalmers Street to Winder Street. The roadway provides driveway access to fronting commercial property. India Street has sidewalks and both angled and parallel parking along various segments. The Uptown Community Plan recommends an ultimate classification of 3-lane Collector east of Chalmers Street.

Columbia Street runs north/south within the study area. The roadway functions as a 2-lane Collector with paved roadway width ranging from approximately 20 feet to 52 feet within the study area. The road has sidewalks and parallel parking on both sides at limited locations within the study area. The roadway provides driveway access to fronting residential properties.

San Diego Avenue runs north/south within the study area. The roadway is one-way in the northbound direction and begins at India Street. The roadway functions as one-way half of a 4-lane major (2 lanes wide). The paved roadway width is approximately
52 feet and provides driveway access to fronting commercial property. The road has sidewalks and both angled and parallel parking.

ANALYSIS OF EXISTING CONDITIONS

To determine service levels on study area roadway segments, we compared the average daily traffic to their theoretical daily capacities, based upon their road classifications. The analysis of peak hour intersection performance was conducted using the Synchro software program. Look-up tables for LOS and analysis worksheets are shown in the Appendix.

The resulting daily traffic volumes with corresponding LOS are shown in Table 3-1 and the existing weekday morning and evening peak hour intersection volumes are summarized in Table 3-2. All roadway segments currently operate at a level of service “C” or better with the exception of India Street within the study area. The segment currently operates at LOS E. All of the study intersections currently operate at LOS C or better in the AM and PM peaks.

Table 3-1 | Existing Roadway Segment Conditions

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Lanes/Class</th>
<th>LOS E Capacity</th>
<th>Existing - No Build</th>
<th>ADT</th>
<th>V/C</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between San Diego Ave. & India St.</td>
<td>4MA</td>
<td>40,000</td>
<td>29,200</td>
<td>0.730</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>east of India St.</td>
<td>4MA</td>
<td>40,000</td>
<td>28,800</td>
<td>0.720</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>India Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>south of Chalmers St.</td>
<td>2C 1W</td>
<td>15,000</td>
<td>7,900</td>
<td>0.527</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>between Winder St. & Washington St.</td>
<td>2C CIF</td>
<td>8,000</td>
<td>6,700</td>
<td>0.838</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Chalmers Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between India St. & Columbia St.</td>
<td>2C MFF</td>
<td>8,000</td>
<td>1,100</td>
<td>0.138</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>San Diego Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Washington St. & India St.</td>
<td>4MA 1W</td>
<td>20,000</td>
<td>5,700</td>
<td>0.285</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Winder Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between India St. & Columbia St.</td>
<td>2C CIF</td>
<td>8,000</td>
<td>2,500</td>
<td>0.313</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Columbia Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Andrews St. & Winder St.</td>
<td>2C MFF</td>
<td>8,000</td>
<td>900</td>
<td>0.113</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>between Winder St. & Chalmers St.</td>
<td>2C MFF</td>
<td>8,000</td>
<td>900</td>
<td>0.113</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: 2C CIF is a 2 lane Collector with commercial and industrial fronting property. 2C MFF is a 2 lane Collector with multi-family residential fronting property. 4MA is a 4 lane Major Arterial. 2C 1W is a 2 lane Collector One-Way. 4 MA 1W is a 4 lane Major Arterial - One Way.

ADT - Average Daily Traffic (veh/day)
V/C - Volume over Capacity ratio

Table 3-2 | Existing Intersection Conditions

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Existing Delay</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM Peak Hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Hancock St. / Washington St.</td>
<td>22.9</td>
<td>C</td>
</tr>
<tr>
<td>2. San Diego Ave. / Washington St.</td>
<td>8.1</td>
<td>A</td>
</tr>
<tr>
<td>3. India St. / Washington St. / Andrews St.</td>
<td>19.7</td>
<td>B</td>
</tr>
<tr>
<td>4. India St. / Winder St.</td>
<td>9.7</td>
<td>A</td>
</tr>
<tr>
<td>5. Columbia St. / Andrews St.</td>
<td>4.3</td>
<td>A</td>
</tr>
<tr>
<td>6. Columbia St. / Winder St.</td>
<td>6.2</td>
<td>A</td>
</tr>
<tr>
<td>7. San Diego Ave. / India St. Right Turn *</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>PM Peak Hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Hancock St. / Washington St.</td>
<td>25.7</td>
<td>C</td>
</tr>
<tr>
<td>2. San Diego Ave. / Washington St.</td>
<td>10.1</td>
<td>B</td>
</tr>
<tr>
<td>3. India St. / Washington St. / Andrews St.</td>
<td>16.8</td>
<td>B</td>
</tr>
<tr>
<td>4. India St. / Winder St.</td>
<td>9.8</td>
<td>A</td>
</tr>
<tr>
<td>5. Columbia St. / Andrews St.</td>
<td>2.3</td>
<td>A</td>
</tr>
<tr>
<td>6. Columbia St. / Winder St.</td>
<td>6.6</td>
<td>A</td>
</tr>
<tr>
<td>7. San Diego Ave. / India St. Right Turn *</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

* Unsignalized intersection
Figure 3-1
Existing Circulation Network
Figure 3-2
Existing Road Classifications and Segment Volumes
Figure 3-3
Existing AM/PM Peak Hour Intersection Volumes
EXISTING CIRCULATION ISSUES

Because the study area includes sloping topography, nearby highway infrastructure, and one-way streets, the ability to circulate around the neighborhood is limited to certain routes. There are two primary traffic circulation patterns that were mentioned by the Uptown Partnership, Five Points Advisory Committee, or observed by KOA Corporation. The circulation patterns have created issues with commercial patrons trying to find parking and by commuters using some streets as a shorter, faster route to other destinations beyond Five Points.

Parking Circulation

Like many commercial areas, finding available on-street parking in the Five Points area can be challenging at times. This is most apparent during peak business hours. As discussed in the Circulation Alternatives chapter, the lack of parking near the commercial areas and the lack of convenient road connections to circulate have forced patrons to travel into the nearby residential areas to find places to park. In some cases, people have parked several blocks away in the neighborhoods above the commercial district, affecting the ability for residents themselves to find parking during peak business hours. Figure 3-4 shows the available parking near the Five Points area and the typical traffic patterns of those seeking parking spaces.

The suggested alternatives should be sensitive to the limited parking in the area by either adding parking where feasible or by minimizing any negative parking affects of the proposed road improvements.

Commuter Circulation

The street network configuration in the Five Points neighborhood creates a short-cut along India Street as commuters travel north and turn east on Washington Street to continue to the Mission Hills and Hillcrest neighborhoods, bypassing San Diego Avenue. Although this is not necessarily a misuse of the road system, the shorter the distance and the faster the travel time, the more likely people are to use a route. In this case, keeping speeds low approaching the commercial area, which has the greatest pedestrian and parking activity, is desirable. Also, if the majority of the volume on India Street is bypassing the businesses as a commuting route, then moving the traffic onto a different route (San Diego Avenue versus India Street) may be functional. This may make it easier for those to park and calm the area for pedestrian safety as well.

Additionally, residents in the neighborhoods above the commercial area naturally use India Street in order to access Washington Street. From there, the majority appear to travel west to the interstate. Any reconfiguration of the road network in this area must consider their travel needs as well. Figure 3-5 shows the observed speeds and circulation patterns of the commuting vehicles travelling through the Five Points area.

Metered parking along India Street
Figure 3-4
Existing Parking Areas and Vehicle Circulation Pattern
Figure 3-5
Existing Speeds and Commuting Vehicle Circulation Pattern
CIRCULATION ALTERNATIVE CONDITIONS (2008)

The circulation alternative conditions represent opening day of the proposed project alternatives, using the traffic counts that were also used in the existing conditions (2008). Each alternative has its own potential affect to the traffic circulation around the study area and each are studied separately.

GENERAL PROJECT IMPROVEMENTS

All alternatives have a base set of improvements suggested to benefit pedestrian connectivity, calm traffic, and add to the aesthetics of the Five Points area. In general, the improvements set forth to create safe, enjoyable pathways within and approaching Five Points itself and connections to nearby transit nodes. Many hardscape improvements may have traffic calming effects, enhance pedestrian walkability, or add aesthetic qualities, but do not have any considerable effects on traffic LOS. Some of the improvements in the proposed project that do not have effects to operating levels of service of the segments and intersection are discussed below.

Pop-outs have been proposed in the overall concept for several locations, including:
- Hancock Street / Washington Street Intersection
- San Diego Avenue / Washington Street Intersection
- India Street / Washington Street / Andrews Street Intersection
- India Street / Winder Street Intersection
- India Street / San Diego Avenue Intersection
- Along India Street between Chalmers Street & Vine Street

A median island is suggested at the intersection of Columbia Street and Winder Street to prevent traffic from cutting diagonally through the off-set intersection and prevent commercial trucks from parking in the middle of the street.

Also conceptualized is a sidewalk to access the parking on Washington Street (East of India Street) and to provide pedestrian safety for those walking to and from their parked vehicles. Ideally, this walkway could be continued along the length of Washington Street, following the University Avenue exit ramp and ending at the intersection of University Avenue and Ibis Street. Other improvements include decorative crosswalks/pavement and curb ramps, which are proposed at several locations project-wide.

A full list of urban design elements are discussed in length in Chapter 8.

CIRCULATION ALTERNATIVES

Three alternatives were suggested for improvements near the central commercial area of Five Points, along India Street. These different scenarios were created to address different neighborhood circulation issues that have been discussed in the previous chapter. Each alternative was studied for its changes to the area’s circulation by reporting the intersection levels of service (LOS) after traffic volumes were appropriately reassigned. In general, the changes were not expected to affect the project segments and, therefore, were not reported, with the exception of Alternative 3. This last alternative changes traffic patterns significantly for India Street, Washington Street and San Diego Avenue. For this reason, segment analyses were done specifically for the affected segments for Alternative 3 only.

Circulation Alternative 1

Alternative 1 addresses the concern for fast-moving northbound traffic that continues along India Street from the south and to the primary Five Points business frontage. A slight chicane has been added to make the divergence from the higher speed arterial road to the local/commercial portion of India Street more of a right-turn and less appealing to maintain high speeds when bearing right. Although this is still a diverge point and not an actual right turn, the improvements are intended to have a traffic calming effect through the slight horizontal deflection that is produced. Figure 4-1 shows the proposed changes associated with Alternative 1.
No actual changes to the circulation patterns are associated with this alternative, so operations will not change under this scenario. Some parking will be lost as a result of these improvements as discussed later in this chapter. Table 4-3 reports the net parking space changes for all alternatives.

Circulation Alternative 2

The concept for Alternative 2 allows traffic to circulate on the commercial streets and not necessarily be directed into the residential part of the Five Points neighborhood through the widening of India Street south of Winder Street to accommodate both north and southbound traffic. To accommodate this widening, the existing sidewalk on the southwest side of the street will be reduced from 10’ to 5’ wide. This section of India Street would have two lanes and maintain the existing parking/loading zones on the northbound side of the street. Southbound traffic would then have a right-turn only option at San Diego Avenue to look for on-street parking there or to circulate around the block to India Street again. The concept also allows for commuting traffic that comes from the residential neighborhood heading to the freeway to bypass the signalized intersection of Washington Street and India Street. Figure 4-2 illustrates this concept.

A median island is proposed as part of this alternative (shown in green) to provide for an additional traffic calming feature. This area could be landscaped or hardscaped. The southern tip of the median is proposed as hardscape only with rolled curbs to allow for trash pickup vehicles to access the alley off of India Street.

The change to circulation that occurs as a result of this alternative is the addition of southbound movement on India Street south of Winder Street. This southbound movement is expected to be used by some looking for parking in the area, circulating around the block instead of driving into the residential neighborhood up Winder Street. Although not everyone will now use this new connection, it allows for more flexibility for movements and is expected to be used most during the peak business hours. Some neighborhood commuters may also use this new route if northbound India Street is backed up at Washington Street, for example.

The results of the analysis are shown in Tables 4-1 and 4-2. No notable changes in volumes are expected to the segments and are not reported. Some parking will be lost as a result of these improvements, as discussed later in this chapter. Table 4-3 outlines the net parking space changes for all alternatives.
Circulation Alternative 3

The final concept alternative studied considered a one-way couplet system by making India Street from Washington Street to San Diego Avenue one-lane one-way southbound, matched with the existing two-lane one-way northbound San Diego Avenue. This also provides a circulation pattern change for those seeking parking for the commercial district. The loop system is intended to decrease the amount of traffic travelling up Winder Street to seek parking in the neighborhood. Northbound cut-through traffic that currently uses India Street northbound to turn right on Washington Street up to Mission Hills and Hillcrest will be forced to use San Diego Avenue to Washington Street. The shift in traffic adds considerable volume to San Diego Avenue north of India Street and Washington Street east of San Diego Avenue. Figure 4-3 shows the layout for Alternative 3.

![Figure 4-3 | Concept Alternative 3](image)

Tables 4-1 and 4-2 summarize the segment and intersection analyses for this alternative. Some parking will be gained in the central commercial area and lost in other areas of the project as result of these improvements, as discussed later in this chapter. Table 4-3 shows the net parking space changes associated with the project alternatives.

TRIP DISTRIBUTION AND ASSIGNMENT

Some of the alternatives proposed in this chapter modify the roadway network in ways that would change the traffic patterns and volumes on some streets. For this reason, measured volumes would have to be assessed for redistribution if the available routes changed.

Trip distribution and assignment is the process of identifying the probable destinations, directions, and traffic routes that are affected within the project study area. Trip distribution and assignment information can be estimated from observed traffic patterns, experience, or through use of a computerized travel forecast model. Because this project does not involve development, no new trips are generated as a function of the improvements; however, traffic patterns will change depending on the circulation alternative used to study the area. The distribution and reassignment of traffic volumes for this project is based on observed traffic patterns and engineering judgment.

The adjusted lane configurations and volumes assumed for each alternative have been shown in Figures 4-4 to 4-10. Circulation Alternative 1 does not change volumes in the study area and will have the same results as the existing conditions. Circulation Alternative 2 slightly changes some intersection volumes, but not enough to endorse significant changes to the roadway segments in the study area. For this reason, only intersection operations were analyzed for Alternative 2. Alternative 3 has the most dramatic shift to neighborhood circulation, resulting in significant adjustments to both intersection and segment volumes in the study area.

ALTERNATIVE COMPARISON

Segment Operations

Table 4-1 shows the resulting roadway segment conditions at Opening Day (2008) for the Circulation Alternatives. Alternatives 1 and 2 are generally similar to the existing conditions and show the same conditions as the “No Build”, or without project scenario. Alternative 3 shows a shift in traffic made by making India Street one-way southbound and is studied separately.
All roadways would operate at LOS C or better with the exception of two locations. For Circulation Alternative 1 and 2, India Street between Washington Street and Winder Street would operate at LOS E. For Circulation Alternative 3, the segment of India Street between Washington Street and Winder Street would improve to LOS A. San Diego Avenue between Washington Street and India Street would also decrease to LOS C.

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Alternative 1 / Alternative 2</th>
<th>Alternative 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lanes/Class</td>
<td>LOS E Capacity</td>
</tr>
<tr>
<td>Washington Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>between San Diego Ave. & India St.</td>
<td>4MA</td>
<td>40,000</td>
</tr>
<tr>
<td>East of India St.</td>
<td>4MA</td>
<td>40,000</td>
</tr>
<tr>
<td>India Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South of Chalmers St.</td>
<td>2C 1W</td>
<td>15,000</td>
</tr>
<tr>
<td>between Winder St. & Washington St.</td>
<td>2C CIF</td>
<td>8,000</td>
</tr>
<tr>
<td>Chalmers Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>between India St. & Columbia St.</td>
<td>2C MFF</td>
<td>8,000</td>
</tr>
<tr>
<td>San Diego Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Washington St. & India St.</td>
<td>4 MA 1W</td>
<td>20,000</td>
</tr>
<tr>
<td>Winder Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>between India St. & Columbia St.</td>
<td>2C CIF</td>
<td>8,000</td>
</tr>
<tr>
<td>Columbia Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Andrews St. & Winder St.</td>
<td>2C MFF</td>
<td>8,000</td>
</tr>
<tr>
<td>between Winder St. & Chalmers St.</td>
<td>2C MFF</td>
<td>8,000</td>
</tr>
</tbody>
</table>

Abbreviations: 2C CIF is a 2 lane Collector with commercial and industrial fronting property. 2C MFF is a 2 lane Collector with multi-family residential fronting property. 4MA is a 4 lane Major Arterial. 2C 1W is a 2 lane Collector One-Way. 1C 1W is a 1 lane Collector One-Way. 4 MA 1W is a 4 lane Major Arterial - One Way.

ADT - Average Daily Traffic (veh/day)
V/C - Volume over Capacity ratio
Intersection Operations

Table 4-2 shows the resulting intersections conditions at Opening Day (2008) for all Circulation Alternatives. All intersections would operate at acceptable levels of service in both the AM and PM peak hours. Alternatives 1 and 2 are generally similar to the existing conditions. Alternative 3 shows improved LOS at the India / Washington / Andrews Street intersection and a decrease in LOS at the San Diego Avenue / Washington Street intersection from redirected traffic volumes.

Parking

The project proposes hardscape improvements, like pop-outs, that take away existing parking spaces when constructed. Parking spaces were tallied by metered space, or by length of available curb. Although lengths of parallel parking spaces can vary, a standard length of 22' was used to estimate the number of available spaces. In some cases, the actual number of vehicles using a length of curb may exceed the estimated number, but this process was replicated for every circulation alternative for the purposes of calculating project-related reductions in available parking consistently. Differences in parking space types; handicap (blue), commercial loading (yellow), time-restricted parking (green), or passenger loading (white), were weighed equally as available parking spaces.

Changes along India Street for the different Circulation Alternatives will have varying effects to parking on India Street and San Diego Avenue, but will remain constant in other areas of the project. Table 4-3 summarizes estimated parking changes for each alternative.

Circulation Alternative 3 increases parking along India Street by converting it to one-way and using angled parking in the central part of the commercial district, but like the other alternatives, loses parking in other areas due to proposed hardscape improvements. The number of spaces lost will also depend on the number of mid-block pop-outs that are ultimately constructed. Construction of mid-block pop-outs will offer incremental positive effects to traffic calming and add landscaping opportunities, but at the cost of parking spaces lost. Overall, Circulation Alternative 1 has the least number of parking spaces lost.
Table 4-3 | Net Parking Changes

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Existing Parking</th>
<th>Circulation Alt. 1</th>
<th>Circulation Alt. 2</th>
<th>Circulation Alt. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hancock Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between I-5 SB Off Ramp & Washington St.</td>
<td>11 11 0 11 0 11 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Washington St. & I-5 SB On Ramp</td>
<td>8 8 0 8 0 8 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>west of Hancock St.</td>
<td>4 4 0 4 0 4 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Hancock St. & San Diego Ave.</td>
<td>0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between San Diego Ave. & India St.</td>
<td>3 3 0 3 0 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>east of India St.</td>
<td>25 25 0 25 0 25 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Diego Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between I-5 NB On Ramp & Washington St.</td>
<td>20 20 0 20 0 20 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Washington St. & India St.</td>
<td>48 48 0 44 -4 44 -4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Washington St. & Winder St.</td>
<td>27 26 -1 26 -1 29 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Winder St. & San Diego Ave.</td>
<td>6 6 0 6 0 4 -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between San Diego Ave. & Chalmers St.</td>
<td>11 9 -2 8 -3 8 -3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>south of Chalmers St.*</td>
<td>25 17 -8 17 -8 17 -8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrews Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between India St. & Columbia St.</td>
<td>3 3 0 3 0 3 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winder Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between India St. & Columbia St.</td>
<td>19 18 -1 18 -1 18 -1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalmers Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between India St. & Columbia St.</td>
<td>10 10 0 10 0 10 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Andrews St. & Winder St.</td>
<td>8 8 0 8 0 8 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Winder St. & Chalmers St.</td>
<td>23 23 0 23 0 23 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>251 239 -12 234 -17 235 -16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Number of parking spaces lost dependent on number of mid-block pop-outs installed
Figure 4-4
Circulation Alternative 1: Proposed Configuration
Figure 4-5
Circulation Alternative 1: AM/PM Peak Hour Intersection Volumes
Figure 4-6
Circulation Alternative 2: Proposed Configuration
LEGEND

10/20 AM/PM Peak Hour Traffic

Figure 4-7
Circulation Alternative 2: AM/PM Peak Hour Intersection Volumes
Figure 4-8
Circulation Alternative 3: Proposed Configuration
Figure 4.9
Circulation Alternative 3: Road Classifications and Segment Volumes
Figure 4-10
Circulation Alternative 3: AM/PM Peak Hour Intersection Volumes
The three alternatives were discussed by the committee and then shown to the community. Each alternative was explained in detail, demonstrating the differences in circulation patterns that would occur as a result of the change, the relative effectiveness in achieving traffic calming and circulation goals, as well as impacts to local access and parking.

The community was given a chance to discuss their varied opinions, ask questions, and vote on which alternative they felt most positive towards. Tallying the votes, Circulation Alternative 2 was determined to be the most favorable option by the public. Comments received during the workshop pointed to the increased access that would be given to drivers on southbound India Street, without precluding any existing access.

In addition to the selected Circulation Alternative 2, all other improvements were generally embraced by the community. Concerns regarding parking loss were balanced by the possibility of permanent parking gains on eastbound Washington Street. The following chapter shows the results of the analysis of the circulation alternatives.
HORIZON YEAR CONDITIONS (2030)

Horizon year conditions represent traffic conditions in Year 2030.

HORIZON YEAR TRAFFIC VOLUMES

Traffic growth on area roadways is a function of the expected land development, economic activity, and changes in demographics. Several methods can be used to estimate this growth. For this analysis, a growth rate based on the SANDAG Series 11 traffic forecast model was applied to the existing traffic counts to develop horizon year base volumes. Volumes for Washington Avenue assume a growth rate of 35.5% and 24.0% for other roadways in the study area based on the SANDAG Series 11 model.

HORIZON YEAR CIRCULATION NETWORK

The circulation improvements for the Horizon Year were the same as the Opening Day and no other circulation network changes are assumed to happen between the Opening Day and Horizon Year. Figure 5-1 shows the horizon year circulation network.

The effect of the proposed project on the study area circulation network was evaluated. The following tables summarize the results of this analysis. Figures 5-2 through 5-7 show the horizon year intersection and roadway segment conditions with and without the proposed project.

The Horizon Year results in Table 5-1 show that Washington Street study segments would operate at LOS E and India Street between Washington Street and Winder Street would operate at LOS F for Alternatives 1 and 2, which are assumed to have basically the same volumes as the “No Build” scenario. For Circulation Alternative 3, the segment of Washington Street between San Diego Avenue and India Street would operate at LOS E, the same as in Alternatives 1 and 2. India Street between Washington Street and Winder Street would improve to LOS A; however, San Diego Avenue south of Washington Street would also decrease to LOS D.

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Lanes/Class</th>
<th>LOS E Capacity</th>
<th>ADT</th>
<th>V/C</th>
<th>LOS E Capacity</th>
<th>ADT</th>
<th>V/C</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington Street</td>
<td>4MA</td>
<td>40,000</td>
<td>39,600</td>
<td>0.990</td>
<td>E</td>
<td>4MA</td>
<td>40,000</td>
<td>38,300</td>
</tr>
<tr>
<td>east of India St.</td>
<td>4MA</td>
<td>40,000</td>
<td>39,100</td>
<td>0.978</td>
<td>E</td>
<td>4MA</td>
<td>40,000</td>
<td>39,100</td>
</tr>
<tr>
<td>India Street</td>
<td>2C 1W</td>
<td>15,000</td>
<td>9,800</td>
<td>0.653</td>
<td>C</td>
<td>2C 1W</td>
<td>15,000</td>
<td>9,800</td>
</tr>
<tr>
<td>between Winder St. & Washington St.</td>
<td>2C CIF</td>
<td>8,000</td>
<td>8,400</td>
<td>1.050</td>
<td>F</td>
<td>1C 1W</td>
<td>7,500</td>
<td>2,200</td>
</tr>
<tr>
<td>Chalmers Street</td>
<td>2C MFF</td>
<td>8,000</td>
<td>1,400</td>
<td>0.175</td>
<td>A</td>
<td>2C MFF</td>
<td>8,000</td>
<td>1,400</td>
</tr>
<tr>
<td>between India St. & Columbia St.</td>
<td>2C MFF</td>
<td>8,000</td>
<td>1,200</td>
<td>0.150</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Diego Avenue</td>
<td>4 MA 1W</td>
<td>20,000</td>
<td>7,100</td>
<td>0.355</td>
<td>A</td>
<td>4 MA 1W</td>
<td>20,000</td>
<td>16,700</td>
</tr>
<tr>
<td>Winder Street</td>
<td>2C CIF</td>
<td>8,000</td>
<td>3,100</td>
<td>0.388</td>
<td>B</td>
<td>2C CIF</td>
<td>8,000</td>
<td>3,100</td>
</tr>
<tr>
<td>Columbia Street</td>
<td>2C MFF</td>
<td>8,000</td>
<td>1,200</td>
<td>0.150</td>
<td>A</td>
<td>2C MFF</td>
<td>8,000</td>
<td>1,200</td>
</tr>
</tbody>
</table>

Abbreviations: 2C CIF is a 2 lane Collector with commercial and industrial fronting property. 2C MFF is a 2 lane Collector with multi-family residential fronting property. 4MA is a 4 lane Major Arterial. 2C 1W is a 2 lane Collector One-Way. 1C 1W is a 1 lane Collector One-Way. 4 MA 1W is a 4 lane Major Arterial - One Way.

ADT - Average Daily Traffic (veh/day)
V/C - Volume over Capacity ratio
In the Horizon Year (2030), all intersections would operate at acceptable levels of service in both the AM and PM peak hours with one exception. The intersection of India / Washington / Andrews Street would operate at LOS D or worse for Alternatives 1 and 2 in the AM and PM peaks. Alternative 3 shows improved LOS at the India / Washington / Andrews Street intersection and a decrease in LOS at the Hancock Street / Washington Street and San Diego Avenue / Washington Street intersections as a result of redirected traffic volumes. Table 5-2 summarizes the Horizon Year intersection conditions.

Table 5-2 | Horizon Year Intersection Conditions (2030)

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM Peak Hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delay</td>
<td>LOS</td>
<td>Delay</td>
</tr>
<tr>
<td>1. Hancock St. / Washington St.</td>
<td>22.8 C</td>
<td>22.9 C</td>
<td>22.8 C</td>
</tr>
<tr>
<td>2. San Diego Ave. / Washington St.</td>
<td>8.6 A</td>
<td>8.9 A</td>
<td>22.9 C</td>
</tr>
<tr>
<td>3. India St. / Washington St. / Andrews St.</td>
<td>81.5 F</td>
<td>79.9 E</td>
<td>4.9 A</td>
</tr>
<tr>
<td>4. India St. / Winder St. *</td>
<td>11.3 B</td>
<td>11.3 A</td>
<td>7.7 A</td>
</tr>
<tr>
<td>5. Columbia St. / Andrews St. *</td>
<td>4.2 A</td>
<td>4.2 A</td>
<td>4.2 A</td>
</tr>
<tr>
<td>6. Columbia St. / Winder St. *</td>
<td>6.4 A</td>
<td>6.4 A</td>
<td>6.0 A</td>
</tr>
<tr>
<td>7. San Diego Ave. / India St Right Turn. *</td>
<td>NA NA</td>
<td>8.4 A</td>
<td>2.2 A</td>
</tr>
</tbody>
</table>

* Unsignalized intersection
Figure 5-1
Horizon Year Road Classifications and Segment Volumes
LEGEND
10/20 AM/PM Peak Hour Traffic

Figure 5-2
Horizon Year AM/PM Peak Hour Intersection Volumes
Figure 5-4
Circulation Alternative 2: Horizon Year AM/PM Peak Hour Intersection Volumes
Figure 5-5
Circulation Alternative 3: Horizon Year Road Classifications and Segment Volumes
Figure 5-6
Circulation Alternative 3: Horizon Year AM/PM Peak Hour Intersection Volumes
CHAPTER 6

PEDESTRIANS, BICYCLES & TRANSIT

BACKGROUND

The City of San Diego’s General Plan for transportation calls for the establishment of “a fully integrated system of vehicular, transit, bicycle and pedestrian facilities to meet current and future needs.” It also acknowledges the importance of providing smooth traffic flow along area arterials, but discourages street improvements that could negatively impact the pedestrian environment. The plan also promotes the effective use of transit and bicycle facilities to enhance mobility.

PEDESTRIAN CIRCULATION

The purpose of evaluating pedestrian facilities is to fully integrate vehicular, transit, bicycle, and pedestrian facilities as directed in the Uptown Community Plan. This section documents:

- Where pedestrians are walking within the study area
- The obstacles to pedestrian mobility
- Pedestrian facilities that link the different destinations
- The walking distances between different destinations

Pedestrian Study Area

The study area for pedestrian facilities was determined using a five-minute walking radius from the center of the Five Points Commercial neighborhood. The five-minute walking radius assumes a pedestrian travel speed of 4 feet per second which equates to approximately 1,200 feet. Figure 6-1 shows the resulting five-minute walking radius from the Five Points Commercial neighborhood. The study area for the pedestrian facilities encompasses Washington Street Trolley Station, commercial spaces on Pringle Street, residential neighborhoods both north and south of Washington Street, and commercial spaces south of the Five Points Commercial neighborhood on India Street.

Pedestrian Land Use Attractors and Generators

Figure 6-2 illustrates land uses that would attract or generate pedestrians within the pedestrian study area. The land uses include residential, office, commercial, light industrial, transit, and mixed land uses. Commercial land uses focus along the main roadways of the study area – Washington Street, San Diego Avenue, and India Street. The commercial land uses consist primarily of numerous types of restaurants and several bars with some commercial offices interspersed within the areas. Residential land uses begin approximately two blocks from the commercial area north and south of Washington Street. The Washington Street station of the San Diego Blue Line Trolley and bus stops for Route 10 located on Washington Street are transit-related generators/attractors in the study area.

Pedestrian Barriers

Although the general study area is based on a 1,200-foot radius from the center of the project, many factors affect the actual mobility of pedestrians within the study area. The Five Points neighborhood has a sloping topography, nearby limited-access highways, and rail lines that create barriers that obstruct pedestrians. The barriers make the distance travelled for some routes much longer than simply drawing a line from Point “A” to Point “B”. The canyons, slopes, Interstate 5 and the railroad that run parallel to Pacific Highway are all obstacles that disrupt pedestrian access. Stairway connections exist within the study area as well, providing some access through slope/canyon barriers, allowing for some level of pedestrian connectivity. The barriers and connections are shown on Figure 6-3.

Linkage and Connectivity

Existing pedestrian facilities were inventoried as part of the existing conditions analysis to determine the type of facilities and
their condition. Pedestrian facilities in the Five Points Commercial neighborhood were identified using the Route Types described in the San Diego Pedestrian Master Plan (December 2006). Existing facilities include corridor sidewalks, neighborhood sidewalks, and ancillary pedestrian facilities. Corridor sidewalks are defined as sidewalks along roads that support moderate business and shopping districts. Neighborhood sidewalks are defined as sidewalks along low to moderate density housing. Ancillary pedestrian facilities constitute facilities such as the pedestrian stairway adjacent to southbound Washington Street that connects the Five Points Commercial neighborhood with the surrounding residential area. The pedestrian linkages are indicated in Figure 6-3 based on the existing pedestrian facilities and the key attractors within the study area.
Figure 6-3
Pedestrian Barriers and Connections
Existing Pedestrian Facilities

The Five Points Commercial area has many existing features that make the area walkable. There are continuous sidewalks on both sides of the main roadways that range from approximately 6 to 11 feet in width. The sidewalks are primarily free of obstructions, well maintained, and had few physical deficiencies such as cracks, gaps and lack of curb ramps. The positive environmental factors include the mature trees located along India Street at the epicenter of the Five Points Commercial area which provide shade from direct sunlight, well maintained landscaped areas, trash receptacles in many locations, and sidewalks free of litter and weeds. There are street lights along the major roadways including the underpass of I-5 which in its absence could contribute to a perception of being unsafe. Some commercial establishments provide outside enclosed seating areas that encourage foot traffic. Most intersections have curb ramps for physically disabled pedestrians. The signalized intersections of Washington Street at Hancock Street, Washington Street at San Diego Avenue, and Washington Street at India Street all have pedestrian countdown signals to help pedestrians time their crossings. The western crosswalk at Washington Street and India Street provides an audio countdown for pedestrians.

Existing Pedestrian Deficiencies

Some existing deficiencies detract from pedestrian mobility in the area. There are high traffic volumes traveling at high speeds along Washington Street and San Diego Avenue that do not buffer pedestrians from noise or fumes. There are missing curb ramps at two locations. Pedestrian flow is limited along the sidewalks on Washington Street directly east of Hancock Street by benches and trash receptacles for transit riders. Figure 6-4 shows existing pedestrian facilities in the study area and locations where pedestrian facilities are deficient in the Five Points Commercial neighborhood.
Figure 6-4
Existing Pedestrian Facilities and Deficiencies
Walking Distances

One factor affecting the walkability of the Five Points Commercial area is distances of attractors and destinations to one another. Subareas were identified based on the land use of the destination/attractor as shown in Figure 6-5. The distances pedestrians would walk from one subarea to another using the existing pedestrian facilities are indicated in Table 6-1. The distances ranged from 300 feet to 2,360 feet which would equate to approximately 1 to 9 minutes assuming a pedestrian travel speed of 4 feet per second.

Table 6-1 | Walking Distances (feet)

<table>
<thead>
<tr>
<th>Location</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five Pts Commercial</td>
<td>1040</td>
<td>1340</td>
<td>300</td>
<td>1200</td>
<td>1350</td>
<td>920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial/Commercial</td>
<td>1330</td>
<td>1390</td>
<td>850</td>
<td>1485</td>
<td>2360</td>
<td>2120</td>
<td>2070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Rail Station</td>
<td>1390</td>
<td>850</td>
<td>550</td>
<td>1630</td>
<td>2140</td>
<td>2350</td>
<td>2090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office/Commercial</td>
<td>1340</td>
<td>870</td>
<td>550</td>
<td>1630</td>
<td>2140</td>
<td>2350</td>
<td>2090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office/Commercial</td>
<td>1040</td>
<td>1570</td>
<td>1630</td>
<td>1545</td>
<td>1220</td>
<td>1920</td>
<td>1730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td>300</td>
<td>1485</td>
<td>1360</td>
<td>1400</td>
<td>830</td>
<td>630</td>
<td>1260</td>
<td>1280</td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>1200</td>
<td>2360</td>
<td>2140</td>
<td>2320</td>
<td>1220</td>
<td>1900</td>
<td>1930</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>1350</td>
<td>2120</td>
<td>2350</td>
<td>2220</td>
<td>1920</td>
<td>1900</td>
<td>1440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td>920</td>
<td>2070</td>
<td>2090</td>
<td>2030</td>
<td>1730</td>
<td>1280</td>
<td>1440</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distances measured in feet.
EXISTING BICYCLE FACILITIES

Bicycling is a basic fundamental form of transportation that is sometimes overlooked in this age of high-tech motorized travel. Yet this human-powered transportation mode is important to the success of the transportation system as a whole. Bicycling is considered a form of transportation that adds a viable alternative to freedom of mobility. Transportation planners and engineers have the same level of responsibility to provide for the safety of bicyclists and pedestrians as they do for motorists.

Bicycles can provide convenient transportation for destinations ranging between one and five miles. More experienced riders may be comfortable commuting up to 20 miles if there are adequate bicycle facilities. According to the current City of San Diego Bicycle Master Plan, bikeways can be classified into three types:

- Class I Bike Path – A bike path provides for bicycle travel on a paved right-of-way completely separated from any street or highway.

- Class II Bike Lane – These facilities are often referred to as bike lanes. Bike lanes provide a striped and stenciled lane for one-way travel on a street or highway. When properly designed, bike lanes help improve the visibility of bicycles.

- Class III Bike Route – Generally referred to as a bike route, it provides for shared use with pedestrian or motor vehicle traffic, is identified only by signage and is recommended when there is enough right-of-way for bicyclists and motorists to safely pass.

Any of these facilities can be implemented in the Five Points study area, depending on predicted users, automobile traffic coordination, and several other factors. These include roadway classifications characteristics, Community Plan requirements, and availability of adequate right-of-way that can accommodate these facilities. On-road bicycle lanes (Class II) allow higher bicycle speeds compared to bicycle routes (Class III). Shared-use paths (Class I) are useful for children and relaxed recreational riders who are uncomfortable sharing the road with automobiles. Just as for sidewalks, connectivity in the bicycle network is very important. Riders of all abilities should be able to use the network.

Bicycle Study Area

There are a number of bicycle land use attractors that are within a five mile study area. These land uses include commercial, transit and mixed land uses. The commercial land uses in the immediate vicinity of Five Points consist primarily of restaurants and retail spaces. Surrounding communities such as Hillcrest, Peninsula, Downtown, Old Town and Mission Valley also contain large land use attractors/generators within this five mile study area. Figure 6-6 shows these communities and their proximity to the Five Points neighborhood. Bicycle facilities are necessary to provide bicycle connections between these communities.

Washington Street offers bike lanes east of Five Points, terminating approximately 600’ east of India Street. Washington Street and Hancock Street are only designated as an “other suggested bike route” by the City of San Diego, which does not classify it as an actual signed route. The closest bike facilities
The San Diego Bike Master Plan is currently being updated. However, the draft proposes bicycle facility improvements for Washington Street. These plans are still under review and not yet finalized. For the purposes of this project, bike lanes were considered to be extended on Washington Street from where they now end, east of India Street, to Hancock Street. However, the lack...
FIVE POINTS COMMERCIAL NEIGHBORHOOD PARKING AND CIRCULATION DESIGN

EXISTING TRANSIT FACILITIES

The Uptown Community Plan stresses the importance of incorporating all modes of transportation in the area. Transit facilities in the area include the Washington Street station of the San Diego Trolley and bus stops located on Washington Street for Route 10. Figure 6-11 illustrates the transit facilities within the general project area and pedestrian and bike connectivity to the network.

Trolley Facilities

The Blue Line of the San Diego Trolley runs north-south paralleling Interstate 5 and provides service from the international border crossing at San Ysidro to the Old Town Transit Center. The trolley station is located west of Hancock Street and Washington Street. The grade level platform/station has seating, lighting, and limited shade for transit riders. The trolley station is approximately 1400 feet from the center of the Five Points commercial area. The project improvements are designed to help connect and enhance the walking environment between the trolley station and the Five Points area.
Bus Facilities

The primary bus service for Five Points is Route 10 of the Metropolitan Transit Service, which has four bus stops that provide bus service from the Old Town Transit Center to City Heights via University Avenue. Figure 6-10 shows MTS Route 10, which services the Five Points neighborhood. The bus stops within the Five Points Commercial neighborhood are located along Washington Street between Hancock Street and India Street. There are two stops on each side of Washington Street. Two of the bus stops have an uncovered bench and trash receptacle with adjacent overhead street lighting. The project improvements include new, specially designed bus shelters.

Headway for weekday morning commute time is seven minutes for both the Blue Line and Bus Route 10.
CHAPTER 7

COLLISION HISTORY

In order to analyze the collisions in the project area, the City of San Diego provided KOA Corporation a summarized listing of traffic accidents for San Diego Avenue, India Street, and Washington Street. The data was sampled over 5 years, from April 20, 2004 to April 20, 2009. KOA used this data to analyze any patterns in the collisions for the recent history within the main project area.

METHODOLOGY

The collision data was provided in three reports, one for each street: San Diego Avenue, India Street, and Washington Street. The data was first checked for duplicate incidents that occur when reports of intersecting streets offer the same incident. The data was then tagged for characteristics to help stratify the collision information. The data includes information about location, parties involved, severity, cause, conditions, and date of each incident. The vital characteristics for this project were determined to be:

- Party Type (pedestrian or bicycle)
- Severity (injury or fatality)
- Cause (speeding)

The data was plotted on a map of the project area based upon the location of the incident and any specific characteristics that applied were coded with varying colors and shapes for the data points. The data was then reviewed for patterns in the data set. Figure 7-1 shows the plotted collisions over the 5 year time period that was studied.

COLLISION DATA ANALYSIS

In total, 73 collisions were reported in the immediate project area. Of those, 42 involved injuries and 3 resulted in a fatality. In the 5 years studied, there were 12 speed related collisions with half of those resulting in injuries. Table 7-1 summarizes the various collision types.

Bicycles and Pedestrians

This table indicates 55 standard collisions between motor vehicles, with about half resulting in injuries. Although most collisions involve only motor vehicles, 8 of these collisions were with bicycles and 10 involved pedestrians. Nearly all accidents with bicycles and pedestrians reported injuries or fatalities.

<table>
<thead>
<tr>
<th>Location</th>
<th>General Collision</th>
<th>Bicycle</th>
<th>Pedestrian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hancock St. / Washington St. Intersection</td>
<td>4</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>San Diego Ave. / Washington St. Intersection</td>
<td>4</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Washington St. / India St. Intersection</td>
<td>7</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>India St. / Winder St. Intersection</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>India St. / San Diego Ave. Intersection</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Washington St., east of India St.</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>India St., between. Washington St. / San Diego Ave.</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Mid-Block Locations</td>
<td>6</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>27</td>
<td>28</td>
<td>0</td>
</tr>
</tbody>
</table>
Also, most collisions happened at the signalized intersections within the study area. This is a common phenomenon, as most conflict points along a roadway are at intersections. The greatest frequency of collisions occurred at the Washington Street / India Street intersection. A total of 19 collisions have happened at or in close proximity to this intersection. Of these collisions, 3 involved bikes and 5 involved pedestrians. One of the pedestrian incidents resulted in a fatality.

Based on current practices and research, it has been shown that enhancements to pedestrian safety at the signalized intersections, such as the addition of pop-outs and conspicuous decorative crosswalks, can be extremely beneficial in addressing the pedestrian safety concerns within the project area.

Speeding

Although speeding was seen as the cause for approximately 16% of all accidents, no specific area was seen to be especially dangerous due to speeding. The largest occurrence of speeding related accidents, all with injuries, was seen at Hancock Street approaching Washington Street. This is likely due to traffic exiting Interstate 5 at higher speeds.
CHAPTER 8

URBAN DESIGN COMPONENTS

This chapter discusses urban design components for the project. Recommended elements are meant to (a) significantly improve pedestrian safety in the project area, (b) enhance streetscape aesthetics, and (c) emphasize entry points into the Five Points district.

Numerous improvements were proposed, vetted, and finally selected during Advisory Committee meetings and meetings with the larger community. Design elements discussed are represented through improvements(changes to hardscape, streetscape, and landscape. These elements are recommended generally for these project areas:

- Intersection of Washington and Hancock Streets as the eastbound entry into Five Points
- ‘Y’ Intersection of India Street and San Diego Avenue as the northbound entry into Five Points
- Intersection of Washington and India Streets as the westbound entry to Five Points
- Neighborhood Median Island: Winder Street and Columbia Street
- Underpass as the connection between the trolley and Five Points business district

The draft concept of the project area is shown in Figure 8-1.
INTERSECTION OF WASHINGTON AND HANCOCK STREETS

The intersection of Washington and Hancock Streets serves as a major entry point into Five Points from the west. Several design elements are proposed to enhance this intersection.

Hardscape Improvements

Enhanced Intersection Paving: Enhanced paving such as interlocking pavers or colored concrete in a decorative grid pattern should be added to the entire intersection to emphasize it as a significant gateway into the Five Points district, highlight an important pedestrian crossing area, and to improve the overall aesthetics of this connection to India Street businesses. Light reflective beige or light red brick is recommended for pavement treatment to contrast with the asphalt road and the crosswalk color described below. Figures 8-2 and 8-3 illustrate this concept.

Enhanced Crosswalk Paving: Construct crosswalks with concrete banded red brick at three sides of this intersection to further highlight the gateway theme, define a safe pedestrian route, and increase the visibility of the pedestrian crossings for passing motorists. The three recommended crosswalks include two north-south crosswalks on either side of Washington Street and one east-west crosswalk on the west side of Hancock Street. Red brick is the recommended material in order to complement the red brick of the historic Mission Brewery building located at the northwest corner of the intersection and to match the recently completed crosswalks at the intersection of Washington Street and Goldfinch Street.
Bulb-out Traffic Calming: Add bulb-out curb extensions at the northwest and southwest corners of this busy intersection in order to increase safety for pedestrians waiting to cross. The safety benefits gained by extending the curb include a shorter crossing distance for the pedestrian, increased visibility of the pedestrian for motorists approaching these turns, and the resulting diminished speed for motorists making the turns.

Upgraded Accessibility Ramps: Construct a new accessibility ramp at the northeast corner of the intersection to ensure the presence of curb ramps at all four corners of the intersection. Currently it is a high step with no ramp to access the crosswalk from the sidewalk.

Streetscape Improvements

Landscape Enhancement and Signage: Introduce major enhanced landscaping, new retaining walls, and chain-link fence relocation to open up this area and create a major community entry statement. Way-finding signage can also be added at this intersection as desired. Examples would include directional signage for Old Town and Mission Hills.

Plant Palette: A bold and lively plant palette that climbs the hill and provides both aesthetic and practical benefits is recommended for these corners. Plants such as bougainvillea will provide bold color and also prohibit individuals from accessing the area owned by Caltrans.

Stylized Bus Shelters: Add stylized bus shelters to the northeastern and southeastern corners of the intersection to emphasize the eastern side of Washington as a key connection leading to the India Street businesses, add interest to a currently vacant and expansive concrete corner, and improve the overall streetscape. The architectural style and colors of these shelters can complement the Mission Brewery building by using blue color for the base and a mission tile or deep red metal color for the roof.

Decorative Benches: Include decorative benches at the bus shelters to enhance the architectural theme and overall streetscape. These benches should replace the existing standard brown benches provided by MTS. A black or dust blue color is proposed to complement the colors and style of the Mission Brewery building.

Mission Brewery at Washington Street and Hancock Street

UNDERPASS AT INTERSTATE 5

Painting, streetscape elements, and additional landscaping can improve the aesthetics of the underpass’s now drab, inhospitable concrete walls and sidewalks. Several design elements are proposed to enhance this area.
Streetscape Improvements

Mural: Paint a mural on the north and south walls and ceiling of the underpass to add more interest to the bare concrete, thus creating a more enjoyable pedestrian experience. In addition, painted form liners in various shapes can also be attached to the walls to give the mural a more two-dimensional feel. Street lights and bollards could be added to the underpass to add to the safety and visual appeal of the underpass.

The community agreed that the actual design will be decided through a future design competition, handled under a separate contract.

The State Department of Transportation (Caltrans) is responsible for maintaining the underpass. Through initial discussions with Caltrans, they expressed a desire to be able to have the retaining concrete wall accessible for visual inspection after seismic events. This should be considered by the designer.

‘Y’ INTERSECTION AT INDIA STREET AND SAN DIEGO AVENUE

The Y-shaped intersection of India Street and San Diego Avenue serves as a major entry point into the Five Points district from the south. Several design elements are proposed to enhance this intersection.

Hardscape Improvements

Traffic Tables and Enhanced Intersection Paving: Construct a traffic table with enhanced paving, such as interlocking pavers or colored concrete, at the redesigned intersection of India Street and San Diego Avenue at Winder Street to emphasize it as a significant gateway into the Five Points district, aid in slowing traffic, and highlight an important pedestrian crossing area. Decorative paving should be selected to match the Washington Street and Hancock Street intersection. Figure 8-5 illustrates a rendering of what Circulation Alternative 2 might look like at the existing “Y” intersection, using enhanced/decorative pavement treatments.

Enhanced Crosswalk Paving: Construct pedestrian crosswalks of concrete banded red brick to complement the enhanced paving and increase the visibility of the pedestrian crossing area for passing motorists. Bricks or other materials selected should match the Washington Street and Hancock Street intersection materials.

Figure 8-4 | Underpass Mural Concept

Figure 8-5 | ‘Y’ Intersection Concept Rendering

Interstate 5 underpass on Washington Street
Streetscape Improvements

Signage: Signage for Five Points and/or Mission Hills (such as the pilaster being constructed on Washington Street) should be added at the intersection to emphasize entry into the business district. Other way-finding signs could be added at this intersection as desired, but should not compete in size and style with Five Points/Mission Hills sign.

Landscape Improvements

Area for Landscaping: Shade trees in attractive tree grates should be planted on edges of pedestrian crossings.

INTERSECTION OF WASHINGTON AND INDIA STREETS

The intersection of Washington Street and India Street serves as the westbound entry point into the Five Points district as people come from the Mission Hills and Hillcrest neighborhoods. The design elements proposed to enhance this intersection are described below.

Hardscape Improvements

Enhanced Intersection Paving: Enhanced paving such as interlocking pavers or colored concrete in a decorative grid pattern should be added to the entire intersection to emphasize it as a significant gateway into the Five Points district, highlight an important pedestrian crossing area, and to improve the overall aesthetics of this connection to India Street businesses. This gives balance to the area and offers a repeating pattern to other hardscape improvements mentioned for this project. Light reflective beige or light red brick is recommended for pavement treatment to contrast with the asphalt road and the crosswalk color.

Stylized Bus Shelters: Add stylized bus shelters to the northwestern and southwestern corners of the intersection to emphasize the eastern side of Washington Street as a key connection leading to the India Street businesses. Again, the architectural style and colors of these shelters can complement the Mission Brewery building and forge a recognizable pattern for all bus stops in this area. Figure 8-6 shows an example of a bus stop that may be similar to the proposed bus shelters.

![Figure 8-6 | Example Bus Shelter](image_url)
OTHER IMPROVEMENTS

The project also includes improvements geared to address neighborhood traffic calming, pedestrian connectivity, and bicycle amenities.

Winder Street and Columbia Street

Median Island: The intersection of Winder Street and Columbia Street is an offset intersection with an all-way stop control. There have been complaints from residents that some vehicles traveling westbound down the hill on Winder Street won’t stop completely, and will cut Columbia Street at an angle. Additionally, the road gets wider in this area and is reported to be used by delivery trucks. Residents would prefer commercial truck traffic to remain on India Street. A median island is proposed on Columbia Street, between the offset approaches of Winder Street. This would force traffic to go around the island at a much slower speed when traveling from east and west through the intersection on Winder Street. This median island would also discourage commercial trucks from using this street, by making large vehicle turning movements more difficult. Figure 8-7 shows the approximate size and shape of this island. The island could include landscaping or hardscape treatments.

Washington Street, East of India Street

Sidewalk and Landscaping: Because no designated pedestrian connection exists on Washington Street from India Street east to University Avenue, this project proposes a new sidewalk on the south side of the road. The sidewalk connection also provides a safe place for those parking along Washington Street to access their cars without walking in the vehicular travel lane.

The sidewalk would begin at India Street and end at the University Avenue off-ramp intersection at Ibis Street. The sidewalk can typically be constructed on the existing shoulder width that is available, but retaining walls may be needed in some areas if full width is not available for a 5.5’ sidewalk. Due to the steep slopes on the south side of the canyon, travel lane widths may be considered to be narrowed to mitigate the size of any proposed retaining wall.

Because Washington Street is a gateway to the Five Points area, landscape opportunities such as planting trees along the canyon should be considered in the final design.

Bicycle Amenities

Bicycle Route Signage: Existing bike lanes on Washington Street abruptly terminate and do not offer any route connections to other bike facilities. Because bike lanes can not be extended or added as part of the scope of this project, it is recommended to add Class III bike route signage on Washington Street to logically complete the bike route to Hancock Street. Future projects with the City of San Diego will be addressed in the City’s upcoming Bicycle Master Plan update.

Bicycle Racks: To better serve the bicycle community, locating bike racks near the commercial center on India Street should be considered in the final design. Bike racks were included in the cost estimates.
CHAPTER 9

COST ESTIMATES & FUNDING

The following are estimated planning level costs for all elements of the project and potential funding sources to implement construction.

COST ESTIMATES

It is recommended that the project be implemented to occur in three phases to achieve incremental progress on the project as funding becomes available. The project is broken down into independently constructable areas for flexibility of funding. Each area is further broken into general pay items in Appendix E of this report.

Phase One

The first phase will include most traffic calming, general construction, and aesthetic improvement items for the project. Pop-outs, decorative crosswalks/intersections and landscaping will be designed based upon available budget around the project limits. For Area 1E, further study is required to determine the level of costs associated with these improvements. The cost will vary greatly upon the success of negotiating a reasonable, safe roadway cross section. Narrowing the proposed sidewalk, existing median or travel lanes may also be possible to make these improvements more feasible. Although the extension of the eastbound bike lanes was not included in the improvement cost, they may be considered in the final design if the improvements can feasibly include them at that time.

Phase Two

The second phase is intended for the application of the underpass mural and associated enhancements. This will be done in conjunction with the mural design competition.

Phase Three

The final phase involves the modification of India Street to match the proposed Circulation Alternative 2, making it into a two-way street from Winder Street to San Diego Avenue.

Table 9-1 | Planning Level Cost Estimates by Area

<table>
<thead>
<tr>
<th>Project Phase & Area</th>
<th>Construction Cost</th>
<th>Project Contingency*</th>
<th>Design and Support**</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A Washington St. & Hancock St.</td>
<td>$663,050</td>
<td>$153,500</td>
<td>$98,000</td>
<td>$914,550</td>
</tr>
<tr>
<td>1B I-5 Underpass, Phase 1 (Cleaning)</td>
<td>$23,800</td>
<td>$5,500</td>
<td>$3,500</td>
<td>$32,800</td>
</tr>
<tr>
<td>1C Washington St. & San Diego Ave., Incl.</td>
<td>$574,450</td>
<td>$133,000</td>
<td>$84,900</td>
<td>$792,350</td>
</tr>
<tr>
<td>1D Washington St. & India St.</td>
<td>$476,850</td>
<td>$110,400</td>
<td>$70,500</td>
<td>$657,750</td>
</tr>
<tr>
<td>1E East Washington St. (India St. to University Ave. Off Ramp)</td>
<td>$922,050</td>
<td>$213,400</td>
<td>$136,300</td>
<td>$1,271,750</td>
</tr>
<tr>
<td>1F Winder St. & Columbia St.</td>
<td>$8,740</td>
<td>$2,000</td>
<td>$1,300</td>
<td>$12,040</td>
</tr>
<tr>
<td>1G South India St.</td>
<td>$106,800</td>
<td>$24,700</td>
<td>$15,800</td>
<td>$147,300</td>
</tr>
<tr>
<td>2 I-5 Underpass, Phase 2 (Mural & Enhancements)</td>
<td>$205,200</td>
<td>$47,500</td>
<td>$30,300</td>
<td>$283,000</td>
</tr>
<tr>
<td>3 Winder St. & India St. (Circulation Alternative 2)</td>
<td>$837,650</td>
<td>$193,900</td>
<td>$123,800</td>
<td>$1,155,350</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$3,818,590</td>
<td>$883,900</td>
<td>$564,400</td>
<td>$5,266,890</td>
</tr>
</tbody>
</table>

* Planning Level Contingency Assumed at 25% of Construction Items, not Incl. Percentage-Based Items such as Mobilization and Traffic Control
** Design and Construction Support Assumed at 12%
Figure 9-1
Cost Estimate Areas
FUNDING

This section considers funding programs that may be used to finance the design and construction of design elements outlined as part of the Five Points Commercial Neighborhood Parking and Circulation project. Many times small projects may be fundable through existing funding sources that are available to local agencies, in this case the City of San Diego. For large projects such as this, the local agency may have to use a combination of funding options. The Uptown Partnership has shown a commitment to provide funding for improvements and this funding may be a good match to other funds that when combined can bring the project to fruition. Due to the scope of the Five Points project, there are many aspects that lend itself toward specific funding opportunities. For example, the Five Points project proposes the following: safety features at intersections, enhanced pedestrian mobility, enhanced transit stops, streetscape enhancements and traffic calming, which are some of the features that will be highlighted as funding is applied for.

Federal, state, regional, and local sources offer grant funding for use in improvement projects like this. Funding programs are categorized by the level of government that has actual decision-making authority over the distribution of that program’s funds, regardless of the governmental level source of the funds. This section helps identify the probable types of funding, although more may be available which are not listed.

The sources considered for this project include the following established government funding programs:

Federal
- Federal Highway Administration (FHWA)
- Federal Transit Administration (FTA)

State
- State Transportation Improvement Program (STIP)
- Transportation Investment Fund (TIF)
- State Proposition and Bond Measures

Regional
- State Regional Improvement Program (STIP-RIP)
- Federal Regional Surface Transportation Program (RSTIP)
- Federal Transportation Enhancement Activity (TEA)

Local
- Local Sales Tax (Self-Help) for Transportation
- Local Transportation Fund (LTF)
- Development Impact Fee Programs
- Transit-Oriented Development
- Local Proposition and Bond Measures
- Redevelopment Funds within the North Bay Project Area
- Uptown Partnership, Inc. Funds within the Uptown Community Parking District

Other candidate sources include special assessments, fees, and taxes that may be applied to proportionately assign costs among developers, businesses, and residents within the area served by the project.

Review of Existing Federal, State, and Local Sources

Funding for the construction and implementation of the project could be solicited from traditional federal, state, and local programs for transportation projects. Federal transportation funding is available through programs for capital projects, as well as specific earmarks created by Congress. A variety of state funds are available and are often used as matches for federal dollars. Local funds offer many flexible and innovative options for funding of transportation projects. The following is a summary of potential funding sources for the project.

Federal Programs

SAFETEA-LU (Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users) is the current federal legislation to fund highways, transit, and safety programs over the six years of funding authorization, from 2004 to 2010. SAFETEA-LU, otherwise known as the surface transportation bill (House Resolution 3), was signed by the President on August 10, 2005.
Funding for this program is generated almost entirely by a motor fuel tax and distributed through more than 20 different programs that control application by facility type, permitted use, and geographic location. Programs relevant to this project include:

- Regional Surface Transportation Program (RSTIP)
- Transportation Enhancement Activities (TEA)
- Federal Transit Programs

Regional Surface Transportation Program (RSTP): RSTP was established by the 1991 Federal Intermodal Surface Transportation Efficiency Act (ISTEA) and continued with the passage of TEA 21 in 1997 and SAFETEA-LU in 2005. Of all the funding programs in TEA 21, RSTP is most flexible. A broad variety of transportation projects and modes, including streets and roads, are eligible. Examples of projects eligible for RSTP include:

- Highway construction and improvement projects
- Bridge projects, including construction, reconstruction, seismic retrofit, and painting
- Transit capital improvements
- TDM and carpool projects
- Paratransit projects
- Parking, bicycle, and pedestrian facilities
- Safety improvements and hazard elimination
- Research
- Traffic management systems
- Surface transportation planning
- Transportation enhancement activities and control measures
- Wetland and other environmental mitigation

Transportation Enhancement Activities (TEA): Federal Transportation Enhancement Activity funds are to be used for transportation-related capital improvement projects that enhance quality-of-life in or around transportation facilities. Projects must be over and above required mitigation and normal transportation projects, and the project must be directly related to the surface transportation system. The projects should have a quality-of-life benefit while providing the greatest benefit to the greatest number of people. TEA funds are programmed as part of the State Transportation Improvement Program (STIP) process. Funding may be applied to bicycle capital improvements, pedestrian facilities, transit enhancements, landscaping, right-of-way acquisition, safety improvements to roadway, transit, bike or pedestrian facilities, public art or historic projects linked to transportation.

TEA’s are very broadly defined as:

“…with respect to any project or the area to be served by the project, provision of facilities for pedestrians and cyclists, acquisition of scenic easements and scenic or historic sites, scenic or historic highway programs, landscaping and other scenic beautification, historic preservation, rehabilitation and operation of historic transportation buildings, structures or facilities including historic railroad facilities and canals, preservation of abandoned railway corridors (including the conversion and use thereof for pedestrian and bicycle trails), control and removal of outdoor advertising, archaeological planning and research and mitigation of water pollution due to highway runoff.”

Surface Transportation Program funds are allocated to the California Department of Transportation (Caltrans) and 75 percent of STP funds are programmed by regional agencies such as the San Diego Association of Governments (SANDAG) under current state law.

Federal Transit Act: Funds are available through programs based upon various sections of the Act, including funds for service in rural areas and intercity services (Section 5311); bus purchases and improvements to bus facilities (Sections 5307 and 5309(b)).

Department of Housing and Urban Development (HUD) and Community Development Block Grants (CDBG): Funds to benefit low- and moderate-income citizens through the prevention and elimination of neighborhood blight and to alleviate serious and immediate threats to the health and welfare of community residents. This funding source can be used for public infrastructure and the City of San Diego has a long history of applying for and being awarded these grants.
State Programs

State funding also comes largely from the fuel tax, though recent changes in law now provide for some contribution from the state sales tax on motor fuel. State funds are combined with funding from various federal programs through the biennial State Transportation Improvement Program (STIP) programming process. The funds are apportioned to the state highway system and other projects throughout the state on the basis of a geographically based formula. State funding programs include:

- State Transportation Improvement Program (STIP)
- Local Transportation Fund (LTF)
- State Gas Tax Subvention (City and County Road Fund)
- State Transit Assistance

State Transportation Improvement Program (STIP): The STIP is a multi-year capital improvement program that assists state and local entities with the planning and implementation of transportation improvements to utilize resources in a cost effective manner. All STIP projects must be capital projects (including project development costs) needed to improve transportation. These projects generally may include, but are not limited to, improving state highways, local roads, public transit, intercity rail, pedestrian and bicycle facilities, grade separations, transportation system management, transportation demand management, soundwalls, intermodal facilities, safety, and environmental enhancement and mitigation, including TEA projects. STIP funding is split 25% to the Interregional Transportation Improvement Program (ITIP) for projects nominated by Caltrans, and 75% to County Shares for the State’s 58 counties for projects nominated in each county’s Regional Transportation Improvement Program (RTIP), as decided by regional agencies. The overall STIP is adopted by the California Transportation Commission (CTC), which can accept or reject each RTIP and ITIP in its entirety.

Local Transportation Fund (LTF): The Transportation Development Act (TDA) of 1971 added 0.25% to the statewide sales tax to fund transit services throughout the state. These monies, known as the Local Transportation Fund, are returned to the county of origin for use to operate the transit systems in that area. The funds are administered by the regional transportation planning agency in accordance with TDA regulations. While the primary focus of the LTF is transit service, there are provisions for use of the funds for other transportation modes. For example, under Section 99233.3 of the TDA statute, regions may elect to set aside up to 2% of the LTF for pedestrian and bicycle projects. In regions with less than 500,000 in population, some funds may also be used for street and road purposes upon completion of an annual unmet transit needs process. Funding levels vary both annually and by locale, depending on the sales tax generated.

State Gas Tax Subvention (City and County Road Fund): A portion of the state fuel tax is provided to cities and counties for the construction, improvement, and/or maintenance of public streets and roads.

State Transit Assistance: In addition to the LTF, the Transportation Development Act (TDA) of 1971 also established a program of direct subvention for transit services through state generated funding, known as the Public Transportation Account (PTA). Funds are allocated through the annual state budget. Distribution is calculated by the State Controller and administered by the regional transportation planning agency. Funds are distributed under Section 99313 of the Public Utilities Code based on population, and under Section 99314 based on the state budget. The funds provide transit and paratransit operating assistance, capital projects, and regional transit coordination.

Environmental Enhancement and Mitigation (EEM) Program: Under the EEM program, established in 1989, the legislature is authorized to allocate ten million dollars annually, to local, state, and federal agencies, and nonprofit organizations that undertake environmental enhancement and mitigation projects which are directly or indirectly related to the environmental impact of modifying existing transportation facilities, or for the design, construction or expansion of new transportation facilities. No matching funds or cost shares from the applicant or other funding sources are required to apply for an EEM grant, however, projects that include the greatest proportion of other monetary sources of funding will be rated highest.
Local Mechanisms

Local funding sources include those determined by ordinance or popular initiatives at the level of individual counties, municipalities, or other jurisdictions. These include tax and bond measures framed to fund specific projects or sales of projects, or to create a pool of discretionary funding that may be used to fund transportation projects according to evolving needs.

Local Transportation Sales Tax: Local jurisdictions pass sales tax measures to fund specific programs, such as transportation infrastructure. The sales tax proceeds are allocated to specific projects proposed by the local jurisdictions.

Development Fees: These are fees that are imposed by a local jurisdiction on new residential, commercial, and industrial construction that adds square footage. Development fee revenues help fund only roadway and transit capital improvements, necessitated by the development of property, and cannot be used for roadway and transit maintenance expenses.

Traffic Impact Fees: Under state law, jurisdictions may impose fees on developments that mitigate their impacts on local services. One common impact fee is for traffic generated by the new development on the road system. Fees must be backed by a traffic study that provides a nexus of the improvements to the traffic generated by the development, as required by Assembly Bill 1600.

TransNet Sales Tax Funds: San Diego County voters passed a local tax ordinance authorizing the creation of the TransNet Sales Tax, imposing a 1/2 cent “transaction and use tax” solely to fund transportation improvements.

TransNet Smart Growth Incentive Program (SGIP): Will award two percent of the annual TransNet funding (approximately $5 million in FY 2009) for the next 40 years to local governments through a competitive grant program to fund transportation-related infrastructure improvements and planning activities that will help better coordinate transportation and land use in the San Diego region.

Propositions and Bond Measures: State propositions, such as Proposition 1A passed in 2002 and Proposition 1B passed in 2006, are bond measures that have passed to fund infrastructure improvement programs statewide. Proposition A is a local transportation funding source administered by SANDAG. The funds from these various propositions drive several projects within a wide range of transportation modes.

Assessment District: This is typically implemented for the immediate local areas adjacent to a project that will receive the benefit of the completed project. The residents or business owners are assessed a fee that could go towards the construction and maintenance of the project.

Other Sources: Local sales taxes, fees and permits may be implemented as new funding sources for community projects. However, any of these potential sources would require a local election. A challenge grant program with local businesses may be a good source of local funding, in which the businesses can “adopt” a segment of the project to help construct and maintain it. Donations in general from the community can also help raise construction and maintenance funds.

FUNDING RECOMMENDATIONS

Although there are numerous funding sources to consider, some are more suited for this project and should be researched and applied for when the funding cycles are open. The following are our recommendations for the potential funding sources that offer the best match with the improvements that are part of the Five Points project.

- SANDAG’s Smart Growth funding program
- Environmental Enhancement and Mitigation (EEM) Program
- Community Development Block Grants (CDBG)
The Five Points commercial neighborhood includes a diversity of businesses including restaurants, a pub, a language school, a liquor store, two gas stations, and several small businesses serving walk-in clientele. Apartments, condominiums, and houses are located immediately north, east, and south of the commercials center. This diversity of land uses bring together a diversity of community voices; people who live, work, and own property in the neighborhood are key to the evaluation process as well as the recommended projects to improve neighborhood circulation, pedestrian safety, and the overall appearance of the neighborhood.

The public outreach strategy included:

- Assisting the stakeholders in articulating and confirming project goals.
- Providing a menu of options for multiple elements such as pedestrian improvements for the I-5 underpass at Washington Street, landscape improvements, circulation alternatives, and traffic calming strategies.
- Facilitating discussion and generating feedback on the project alternatives.
- Collaborate with stakeholders to rank and prioritize project alternatives.
- Gaining support and consensus for project recommendations.

There were a number of public meetings that were held throughout the project.

Project Kick-Off Meeting: September 16, 2008
This meeting was held with the Five Points Advisory Committee to develop an outreach strategy and project goals.

Walk-Audit: October 21, 2008
A walk-audit, or in-the-field review of the project area, was held as a way to gather information from residents and business owners of the Five Points neighborhood. The walk began at the trolley station, continued up Washington Street to India Street ending at the intersection of India Street and San Diego Avenue. At each intersection the group discussed various ideas on how to significantly improve pedestrian safety, how to enhance streetscape aesthetics, and how to emphasize the entry points into the Five Points district. Detailed notes were taken with all comments compiled and used by the project team to develop alternative designs for further discussion.

Public Workshop #1: November 3, 2008, 6PM – 8PM
The purpose of this workshop was to engage the public in developing alternative scenarios designed to improve traffic circulation, calm traffic speed, and improve the environment of the pedestrian. Staff from the City of San Diego gave a brief history of street improvements completed to date. Then, the project team presented their ideas on how to improve pedestrian safety, enhance aesthetics, and improve traffic circulation based on comments received on the Walk-Audit. Comments received at the workshop were recorded and used by the project team to refine the alternative proposals.
Advisory Committee Meeting: February 17, 2009, 4 PM
At this meeting the committee and the project team reviewed comments received at the workshop to generate three alternatives to improve circulation on India Street, and three urban design concepts for Washington Street under the I-5 overpass. Landscape improvements, bulb-out curb extensions and accessibility ramps, landscape enhancements, bus shelters and benches, signage, enhanced intersection paving, and bicycle amenities was also discussed.

Advisory Committee Meeting: April 21, 2009, 4 PM
At this meeting the project team presented the results of the traffic study to better understand projected traffic growth and the impact of that growth on the proposed circulation alternatives. The committee continued their discussion on the proposed urban design elements. The committee determined there was now enough information to discuss a preferred alternative with the community. The committee set the date for the final public workshop.

Public Workshop #2: June 1, 2009, 6:30PM – 8PM
The final alternative circulation designs and conceptual streetscape improvements were presented and discussed. The meeting was well attended from both the business and residential community as well as staff from the City of San Diego. The workshop attendees were asked to rank their preferred circulation alternative for the intersection of India and Winder Streets, and their preferred design for the I-5 overpass. Rankings were recorded.

Advisory Committee Meeting: June 16, 2009, 4 PM
At this meeting the Advisory Committee reviewed the results of the public workshop with the project team. Based on input received at the public workshop, along with the traffic study, ideas generated on the Walk-Audit, the pros and cons of the various alternatives as discussed at the three previous meetings, the physical constraints in the neighborhood, private property concerns, and parking concerns, the Advisory Committee recommended that the Uptown Partnership Board of Directors approve the preferred alternative and recommendations as contained in this report.
CHAPTER 11

PREFERRED ALTERNATIVE & RECOMMENDATIONS

This chapter summarizes the operations at the study intersections and segments for the preferred alternative. Circulation Alternative 2 was determined to be the most favorable option by the public.

In addition to the selected Circulation Alternative 2, all other improvements were generally embraced by the community. Concerns regarding parking loss were balanced by the possibility of permanent parking gains on eastbound Washington Street.

Table 11-1 shows the summary of roadway segment conditions for the No Build / Preferred Circulation Alternative 2 and Table 11-2 shows the summary of intersection conditions for Preferred Circulation Alternative 2.

RECOMMENDATIONS

After input from the community and the City of San Diego, the Five Points Advisory Committee agreed to a list of recommendations for the project. The Advisory Committee reviewed comments recorded at the workshop and counted community votes on the presented circulation alternatives. The committee determined that Circulation Alternative 2, the two way street proposal for India Street was the preferred alternative of the

Table 11-1 | Summary of Roadway Segment Conditions – No Build / Preferred Circulation Alternative 2

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Existing (2008)</th>
<th></th>
<th></th>
<th>Horizon Year (2030)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lanes/Class</td>
<td>LOS E Capacity ADT V/C</td>
<td>LOS</td>
<td>Lanes/Class</td>
</tr>
<tr>
<td>Washington Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between San Diego Ave. & India St.</td>
<td>4MA 40,000 29,200 0.730 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>east of India St.</td>
<td>4MA 40,000 28,800 0.720 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>south of Chalmers St.</td>
<td>2C IW 15,000 7,900 0.527 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Winder St. & Washington St.</td>
<td>2C CIF 8,000 6,700 0.838 E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalmers Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between India St. & Columbia St.</td>
<td>2C MFF 8,000 1,100 0.138 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Diego Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Washington St. & India St.</td>
<td>4 MA 1W 20,000 5,700 0.285 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winder Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between India St. & Columbia St.</td>
<td>2C CIF 8,000 2,500 0.313 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Andrews St. & Winder St.</td>
<td>2C MFF 8,000 900 0.113 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between Winder St. & Chalmers St.</td>
<td>2C MFF 8,000 900 0.113 A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: 2C CIF is a 2 lane Collector with commercial and industrial fronting property. 2C MFF is a 2 lane Collector with multi-family residential fronting property.
participants at the workshop. The Advisory Committee unanimously voted to recommend Circulation Alternative 2 to the Uptown Partnership Board of Directors. Also, after reviewing the results of the community voting for the I-5 underpass, the Advisory Committee determined that there was not one favored design for the underpass, yet the community was in favor of the street and landscape improvements. Therefore, by unanimous vote the Advisory Committee recommends the future project be divided into three phases, broken down as:

Phase One
- Thoroughly clean the walls, ceiling, sidewalks, street, and gutter under the freeway;
- Paint the underpass a neutral (off white) color and the ceiling a natural (sky blue) color;
- Examine existing lighting to see if there are opportunities to repair and/or clean the infrastructure to improve illumination in the underpass;
- Proceed with the landscape design on both sides of the underpass;
- Proceed with the proposed bulb-outs at the intersections of Washington Street with Hancock Street, San Diego Avenue, and India Street;
- Proceed with proposed improvements to the bus shelter;
- Proceed with crosswalk and intersection improvements;
- Proceed with bicycle lane signage improvements;
- Proceed with sidewalk improvements on south side of Washington Street from India Street to University Avenue and landscaping opportunities at canyon slopes;
- Fund a design competition for Phase Two.

Phase Two
- A mural and lighting design for the walls and ceiling of the underpass;
- This phase would require reviewing the work done to date on the underpass to come up with a design acceptable to the community, the City, and Caltrans.

Phase Three
- All “Circulation Alternative 2” modifications to India and Winder Streets;
- This phase will require more input from the City of San Diego and community to alter the classification of India Street between Winder Street and San Diego Avenue.

The recommendations given by the Five Points Advisory Committee are a result of the input from the community and results from the report prepared by KOA Corporation.

Table 11-2 | Summary of Intersection Conditions – Preferred Circulation Alternative 2

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Opening Day</td>
<td>Year 2030</td>
</tr>
<tr>
<td></td>
<td>Delay, LOS C</td>
<td>Delay, LOS C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM Peak Hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Hancock St. / Washington St.</td>
<td>23.0 C</td>
<td>22.9 C -0.1</td>
</tr>
<tr>
<td>2. San Diego Ave. / Washington St.</td>
<td>8.2 A</td>
<td>8.9 A 0.7</td>
</tr>
<tr>
<td>3. India St. / Washington St. / Andrews St.</td>
<td>19.9 B</td>
<td>79.9 E 60.0</td>
</tr>
<tr>
<td>4. India St. / Winder St. *</td>
<td>9.7 A</td>
<td>11.3 A 1.6</td>
</tr>
<tr>
<td>5. Columbia St. / Andrews St. *</td>
<td>4.3 A</td>
<td>4.2 A -0.1</td>
</tr>
<tr>
<td>6. Columbia St. / Winder St. *</td>
<td>6.2 A</td>
<td>6.4 A 0.2</td>
</tr>
<tr>
<td>7. San Diego Ave. / India St. Right Turn *</td>
<td>8.4 A</td>
<td>8.4 A 0.0</td>
</tr>
<tr>
<td>PM Peak Hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Hancock St. / Washington St.</td>
<td>25.7 C</td>
<td>30.1 C 4.4</td>
</tr>
<tr>
<td>2. San Diego Ave. / Washington St.</td>
<td>12.1 B</td>
<td>12.6 B 0.5</td>
</tr>
<tr>
<td>3. India St. / Washington St. / Andrews St.</td>
<td>20.1 C</td>
<td>57.5 E 37.4</td>
</tr>
<tr>
<td>4. India St. / Winder St. *</td>
<td>9.8 A</td>
<td>11.6 A 1.8</td>
</tr>
<tr>
<td>5. Columbia St. / Andrews St. *</td>
<td>2.3 A</td>
<td>2.3 A 0.0</td>
</tr>
<tr>
<td>6. Columbia St. / Winder St. *</td>
<td>6.4 A</td>
<td>6.5 A 0.1</td>
</tr>
<tr>
<td>7. San Diego Ave. / India St. Right Turn *</td>
<td>8.5 A</td>
<td>8.5 A 0.0</td>
</tr>
</tbody>
</table>

* Unsignalized intersection

DelayLOSDelayLOSDelayLOSDelayLOS

AM Peak Hour

1. Hancock St. / Washington St. 23.0 C 22.9 C -0.1
2. San Diego Ave. / Washington St. 8.2 A 8.9 A 0.7
3. India St. / Washington St. / Andrews St. 19.9 B 79.9 E 60.0
4. India St. / Winder St. * 9.7 A 11.3 A 1.6
5. Columbia St. / Andrews St. * 4.3 A 4.2 A -0.1
6. Columbia St. / Winder St. * 6.2 A 6.4 A 0.2
7. San Diego Ave. / India St. Right Turn * 8.4 A 8.4 A 0.0

PM Peak Hour

1. Hancock St. / Washington St. 25.7 C 30.1 C 4.4
2. San Diego Ave. / Washington St. 12.1 B 12.6 B 0.5
3. India St. / Washington St. / Andrews St. 20.1 C 57.5 E 37.4
4. India St. / Winder St. * 9.8 A 11.6 A 1.8
5. Columbia St. / Andrews St. * 2.3 A 2.3 A 0.0
6. Columbia St. / Winder St. * 6.4 A 6.5 A 0.1
7. San Diego Ave. / India St. Right Turn * 8.5 A 8.5 A 0.0

* Unsignalized intersection
ATTACHMENT 8

RESOLUTION
RESOLUTION NUMBER R-307956

DATE OF FINAL PASSAGE JAN 14 2013

A RESOLUTION AUTHORIZING APPLICATIONS FOR, ACCEPTANCE, AND EXPENDITURE OF GRANT FUNDING FROM SANDAG FOR THE TRANSNET SMART GROWTH INCENTIVE PROGRAM AND ACCEPTING THE TERMS OF THE GRANT AGREEMENTS.

WHEREAS, the San Diego Association of Governments (SANDAG) has established the Smart Growth Incentive Program (SGIP) to provide TransNet funding for a competitive grant program to fund transportation-related infrastructure improvements and planning activities that will help better coordinate transportation and land use in the region; and

WHEREAS, for the current grant cycle, the SGIP has $9.6 million total, which is split into two grant types: capital projects ($7.68 million) and planning projects ($1.92 million); and

WHEREAS, the City of San Diego seeks to submit five planning project applications requesting an amount not to exceed $1,675,000 in TransNet SGIP funding and four capital project applications requesting an amount not to exceed $3,300,000; and

WHEREAS, the five proposed planning project grant applications are for the following projects: 1) Morena Boulevard Station Area Study Phase II ($400,000); 2) El Cajon Boulevard ($400,000); 3) Pacific Beach Park ($400,000); 4) East Village Green/14th Street Promenade Master Plan ($300,000); and 5) Sixth Avenue Bridge Promenade ($175,000); and

WHEREAS, the four proposed capital project grant applications are for the following projects: 1) University Avenue and 54th Street Roadway Improvements ($1,440,000); 2) Island Avenue Green Street Mobility Improvements ($1,000,000); 3) Downtown Wayfinding Signage...
Program ($500,000); and 4) Five Points Neighborhood Pedestrian Improvements/Washington Street Improvements Phase II ($360,000); and

WHEREAS, the City of San Diego understands that the Smart Growth Incentive Grant Program funding is fixed at the programmed amount, and therefore project cost increases that exceed the grant awarded will be the sole responsibility of the grantee; and

WHEREAS, the Morena Boulevard Station Area Study Phase II grant application will include a match of $45,000 of in-kind staff time. The El Cajon Boulevard grant application will include a match of $45,000 of in-kind staff time, as well as a local match of $50,000 from the Mid-City Community Parking District Fund. The Pacific Beach Park grant application will include a local match of $70,000; $45,000 of which is from in-kind staff time, $10,000 of which is from Council District 2 FY 2013 City Council Community Project, Programs and Services (CPPS) Funds, and $15,000 from Council District 2 FY 2014 CPPS Funds. East Village Green/14th Street Promenade Master Plan grant application will include a local match of $100,000 from the Centre City Public Facilities Financing Plan. The Sixth Avenue Bridge Promenade grant application will not include any matching funds. The University Avenue and 54th Street Roadway Improvements application will include a match of $160,000 already allocated to the project. The Island Avenue Green Street Mobility Improvements application will include a match of $300,000 from the Downtown Parking District. The Downtown Wayfinding Signage Program application will include a match of $1,000,000 from the Downtown Parking District. The Five Points Neighborhood Pedestrian Improvements/Washington Street Improvements Phase II application will include a match of $450,000 already allocated to the project; and
WHEREAS, the City of San Diego agrees to complete the proposed grant projects within a timely manner and in compliance with SANDAG Board Policy No.035; NOW, THEREFORE,

BE IT RESOLVED, by the City Council of the City of San Diego, as follows:

1. That the Mayor or his representative is authorized to file nine grant applications with SANDAG, execute the grant agreements on file in the office of the City Clerk as RR-307956, and to take all necessary actions to secure funding for an amount not to exceed $4,975,000 in SANDAG TransNet SGIP Grant funds.

2. That the Chief Financial Officer is authorized to accept an amount not to exceed $4,975,000 in SANDAG TransNet SGIP Grant funds.

3. That the Chief Financial Officer is authorized to appropriate and expend an amount not to exceed $4,975,000, contingent upon receipt of fully executed grant agreements.

4. That the Chief Financial Officer is authorized to establish a special interest-bearing fund, Grant Projects Fund, if required and contingent upon receipt of fully executed grant agreements.

5. That the Mayor or his representative is authorized to enter into an agreement with Civic San Diego for grant implementation.

APPROVED: JAN I. GOLDSMITH, City Attorney

By

Corrine L. Neuffer
Deputy City Attorney

CLN:js
12/14/2012
01/08/2013 COR. COPY
Dept: Planning
Doc #495692
I hereby certify that the foregoing Resolution was passed by the Council of the City of San Diego, at this meeting of JAN 8, 2013

ELIZABETH S. MALAND
City Clerk

By
Deputy City Clerk

Approved: 1/14/13

(date)

BOB FILNER, Mayor

Vetoed:

(date)

BOB FILNER, Mayor

-PAGE 4 OF 4-
ATTACHMENT 9

LETTERS OF SUPPORT
January 16, 2013

Heather Cooper
SANDAG Smart Growth Incentive Program
Grants Program Manager
401 B Street, Suite 800
San Diego, CA 92101

Dear Ms. Cooper:

I am writing this letter on behalf of the North Bay Community Planning Group, which voted unanimously at its January 16, 2013 meeting to support the SANDAG Smart Growth Incentive Program (SGIP) grant application for the Five Points Neighborhood/Washington Street Pedestrian Improvements project in the North Bay and Uptown communities. The project will improve the walking safety and accessibility of pedestrians and transit users at the Washington Street intersections with Hancock Street and San Diego Avenue.

The proposal to install curb extensions and popouts will narrow the crossing distances across wide streets with fast moving vehicles to improve safety and walkability. Updating poles/pushbuttons and installing audio/countdown timers at street intersections will help make the street crossing experience safer and more comfortable. Improvements to the Washington Street median at San Diego Avenue will enhance the visibility of the surrounding commercial business district, serve a traffic calming purpose and provide a safer street crossing.

The combination of these improvements will allow the mix of commercial and residential uses in the surrounding area to become more vibrant. The improvements will provide needed connections between the area’s commercial and residential uses on both sides of Interstate 5 and bus transit along Washington and the adjacent Green Line trolley station. Along with recent residential development in the area’s northwestern and southeastern portions, these improvements should help stimulate an increase in future smart growth type development and further establish Five Points as a viable neighborhood commercial district.

The North Bay Community Planning Group supports the efforts of the City of San Diego to secure funding for these improvements through the SGIP. The improvements will benefit the businesses, residents and visitors of the greater Five Points and Washington Street neighborhoods.

Sincerely,

Melanie Nickel
Chair
North Bay Community Planning Group
January 18, 2013

Mr. John Collum, AICP
Civic San Diego
401 B Street, Suite 400
San Diego, CA 92101

Dear Mr. Collum:

The Mission Hills Town Council (MHTC) enthusiastically supports Civic San Diego’s SANDAG Smart Growth Incentive Program grant application for the Five Points Neighborhood Pedestrian Improvements/Washington Street Improvements Phase II project in the North Bay and Uptown communities. The project will improve the walking safety and accessibility of pedestrians and transit users at the Washington Street intersections with Hancock Street and San Diego Avenue.

The proposal to install curb extensions and popouts will narrow the crossing distances across wide streets with fast moving vehicles to improve safety and walkability. Updating poles/pushbuttons and installing audio/countdown timers at street intersections will help make the street crossing experience safer and more comfortable. Landscape and hardscape improvements to the Washington Street median at San Diego Avenue will enhance the visibility of the surrounding commercial business district, serve a traffic calming purpose and provide a safer street crossing.

The combination of these improvements will allow the mix of commercial and residential uses in the surrounding area to become more vibrant. The improvements will provide needed connections between the area’s commercial and residential uses on both sides of Interstate 5 and bus transit along Washington and the adjacent Green Line trolley station. Along with recent residential development in the area’s northwestern and southeastern portions, these improvements should help stimulate an increase in future smart growth type development and further establish Five Points as a vibrant neighborhood commercial district.

The MHTC also looks forward to working with the Western Slopes Community Association and the Metro San Diego Community Development Corporation on the placement and design of an entry sign within this area.

The Mission Hills Town Council supports the efforts of the City of San Diego to secure funding for these improvements through the SGIP. The improvements will benefit the businesses, residents and visitors of the greater Five Points neighborhood.

Sincerely,

Lara Gates
President, Mission Hills Town Council
January 16, 2013

Heather Cooper
SANDAG Smart Growth Incentive Program
Grants Program Manager
401 B Street, Suite 800
San Diego, CA 92101

Dear Ms. Cooper,

I am writing in regard to express my support for the City of San Diego’s grant application for the Five Points Neighborhood/ Washington Street Pedestrian and Median Improvements project in the North Bay and Uptown communities. This project is worthy of your serious consideration for funding from the SANDAG Smart Growth Incentive Program (SGIP).

The proposal to install curb extensions and popouts will narrow the crossing distances across wide streets with fast moving vehicles to improve safety and walkability. Updating intersection signal poles and pushbuttons and installing audio notifiers and countdown timers will help make street crossing safer and more comfortable. Improvements to the Washington Street median at San Diego Avenue will also enhance the visibility of the surrounding commercial business district, serve a traffic calming purpose, and provide a safer street crossing experience.

The combination of these improvements will allow the mix of commercial and residential uses in the surrounding area to become more vibrant. The improvements will provide needed connections between the area’s commercial and residential uses along Interstate 5 and bus transit along Washington and the adjacent Green Line trolley station. Along with recent residential development in the area’s northwestern and southeastern portions, these improvements should help stimulate an increase in future smart growth development and further establish Five Points as a viable neighborhood commercial district.

I fully support the efforts of the City of San Diego to secure funding for these improvements through the SGIP. The improvements will benefit the businesses, residents, and visitors of the greater Five Points neighborhood.

Sincerely,

TODD GLORIA
Council President, Third District

TG:kek
January 15, 2013

Ms. Heather Cooper
Grants Program Manager
SANDAG Smart Growth Incentive Program
401 B Street, Suite 800
San Diego, CA 92101

Dear Ms. Cooper:

The City of San Diego’s grant application for the Five Points Neighborhood /Washington Street Pedestrian and Median Improvements project in the North Bay and Uptown communities is worthy of your strong consideration for funding from the SANDAG Smart Growth Incentive Program (SGIP). This project improves pedestrian safety and transit customer accessibility on Washington Street at the intersection of Hancock Street and San Diego Avenue.

The proposed installation of curb extensions and popouts will narrow the crossing distances of wide streets, thus improving pedestrian safety. Updating the walk signal push buttons and installing audio countdown timers at street intersections will create safer street crossing. Improvements to the Washington Street median at San Diego Avenue will enhance the visibility of the surrounding commercial business district and serve a traffic calming purpose.

These improvements will increase the area’s vibrancy by connecting commercial and residential uses that exist on either side of the Interstate 5 freeway as well as connecting bus transit along Washington with the adjacent green line trolley station. Coupled with recent residential development in the area’s northwestern and southeastern portions, these improvements should help stimulate an increase in future smart growth development and further establish Five Points as a viable neighborhood commercial district.

I fully support the efforts of the City of San Diego to secure funding for the Five Points Neighborhood/Washington Street Pedestrian and Median Improvements project through SGIP and appreciate your consideration.

Sincerely,

Kevin L. Faulconer
Councilmember
Second District

KLF:tc
Ms. Heather Cooper
SANDAG Smart Growth Incentive Program
Grants Program Manager
401 B Street, Suite 800
San Diego, CA 92101

Dear Ms. Cooper:

I write in support of the grant application submitted by the City of San Diego for the Five Points Neighborhood/Washington Street Pedestrian and Median Improvements project in the North Bay and Uptown communities. This project will significantly improve the walking safety and accessibility of pedestrians and transit users where Washington Street intersects with Hancock Street and San Diego Avenue.

A major goal of the SANDAG Smart Growth Incentive Program (SGIP) is to fund projects that will improve pedestrian access and safety, especially at transit sites. The proposal to install curb extensions and popouts will narrow the crossing distances across wide streets with fast moving vehicles. Updating poles/pushbuttons and installing audio/countdown timers at street intersections will help make the street crossing experience safer and more comfortable. Improvements to the Washington Street median at San Diego Avenue will enhance the visibility of the surrounding commercial business district, serve as a traffic calming purpose and provide a safer street crossing.

The combination of these improvements will allow the mix of commercial and residential uses in the surrounding area to become more vibrant. The improvements will provide needed connections between the area’s commercial and residential uses on both sides of Interstate 5 and bus transit along Washington and the adjacent Green Line trolley station. In combination with recent residential development in the area’s northwestern and southeastern portions, these improvements should help stimulate an increase in future smart growth development and further establish Five Points as a viable neighborhood commercial district.

I urge SANDAG to support this project that will enhance the pedestrian and transit experience in the North Bay and Uptown communities.

Warmly,

TONI ATKINS
Majority Leader
78th Assembly District