Presentation and Acceptance of the Harbor Drive Multimodal Corridor Study and Direction to Staff

Stephen Shafer
Principal, Economics & Policy
Government & Civic Relations

Larry Hofreiter
Program Manager
Planning & Green Port

Agency Partners

• 3 Full Technical Working Group (TWG) Meetings
• **Multiple** 1-on-1 TWG Meetings
• 2 Public Workshops
• 3 Pop-Up Outreach Events
Process & Timeline

Spring-Summer 2018
- Existing Conditions
 - Issues & opportunities
 - TWG #1
 - Stakeholder & public outreach

Fall 2018
- Key Challenges & Potential Improvements
 - Key challenges
 - Potential improvements
 - TWG #2
 - Final list of improvements
 - Stakeholder & public outreach (challenges only)

Spring/Summer 2019
- Refined Improvements
 - Travel demand modeling
 - Refine final list of improvements
 - Group into projects
 - Evaluation
 - TWG #3

Fall 2019
- Final Plan
 - Stakeholder & public outreach (+workshop)
 - Phasing & funding strategy
 - Agency Input

Study Area
- Corridor from Tenth Avenue Marine Terminal to National City Marine Terminal
- Includes National City, Barrio Logan, and Industrial Waterfront and major east / west connections to Interstate
- Major partners include City of National City, City of San Diego and SANDAG

- Study Area
- Port Tidelands
- Submerged Tidelands
- New Submerged Tidelands
Goals & Performance Metrics

<table>
<thead>
<tr>
<th>GOAL</th>
<th>PERFORMANCE METRICS</th>
</tr>
</thead>
</table>
| I. Improve Community Safety, Mobility & Health | • Quantitative reduction in pollution levels
• Quantitative increase in bicycle, pedestrian and first/last mile connections, facilities, and amenities
• Qualitative decrease in pedestrian and cyclist injuries
• Quantitative vehicle miles traveled |
| II. Improve Goods Movement | • Quantitative travel times, roadway level of service
• Qualitative roadway condition assessment
• Quantitative vehicle miles traveled |
| III. Improve Naval Base Access & Circulation | • Quantitative travel times, roadway levels of service
• Qualitative assessment of multimodal access |
| IV. Improve Shipyard Access & Parking | • Optimize parking
• Qualitative assessment of multimodal access |
| V. Cost Effectiveness | • Quantitative capital cost |

Project Focus Areas

- Alleviate truck traffic
- Improve first/last mile
- Improve traffic flow to/from interstate
- Improve Navy ingress/egress
- Improve first/last mile and National City connectivity
- Improve parking
Project Highlights

- Harbor Drive 2.0
- TAMT Driveway Safety Evaluation
- 28th Street I-5 Access Improvements
- Naval Base Access / Circulation Improvements
- Truck Parking on Tidelands Ave

First and Last Mile Opportunities

- Pedestrian: ↑3.4 miles
- Bicycle: ↑3.4 miles
- Bike & Ped: ↑5.2 miles
Harbor Drive 2.0
A Smarter, Greener and Healthier Harbor Drive

Connected Flexible Haul Road

Existing Conditions
North End Looking South

Harbor Drive 2.0

Connected Flexible Haul Road
Existing Conditions

South End Looking South
2050 Travel Time Savings
AM Peak Hour

Change in Annual CO, NOx and VOC emissions* (tons), 2050
vs. Project No Build Scenario

- Carbon Monoxide (CO) Emissions: ↓ 42.3 tons
- Nitrogen Oxides (NOx) Emissions: ↓ 8.2 tons
- Volatile Oxygen Compounds (VOC) Emissions: ↓ 9.8 tons

*Based on the total reduction (in tons) annualized from AM and PM peak hour travel time analysis.
Change in Annual Fuel Consumption, CO₂ & Passenger Car Equivalents, 2050

vs. Project No Build Scenario

- 600,000 Gallons of fuel saved per year
- 1,150 Passenger car equivalents removed from the road a year
- 5,400 Metric tons of CO₂ emissions saved yearly

*Based on the total reduction annualized from AM and PM peak hour travel time analysis.

Potential Opportunities

- Harbor Drive 2.0
- TAMT Driveway Safety Evaluation
- 28th Street I-5 Access Improvements
- Naval Base Access / Circulation Improvements
- Truck Parking on Tidelands Ave

Engaged Partners
Recommended Action

Receive staff's presentation, accept the completed Harbor Drive Multimodal Corridor Study and direct staff to continue to collaborate with pertinent stakeholders and seek funding opportunities.

Thank You

portofsandiego.org/HarborDriveStudy
Harbor Drive 2.0

Cost Estimate

HARBOR DRIVE 2.0

CONNECTED FLEXIBLE CORRIDOR CONCEPT

<table>
<thead>
<tr>
<th>Summary of Items</th>
<th>Cost Range Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavement Structural Section</td>
<td>$6,300,000</td>
<td>$10,000,000</td>
</tr>
<tr>
<td>Drainage and Water Quality</td>
<td>$500,000</td>
<td>$500,000</td>
</tr>
<tr>
<td>Signing and Striping</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$300,000</td>
<td>$300,000</td>
</tr>
<tr>
<td>ITS/Electrical</td>
<td>$1,000,000</td>
<td>$1,500,000</td>
</tr>
<tr>
<td>Stage Construction</td>
<td>$150,000</td>
<td>$500,000</td>
</tr>
<tr>
<td>Traffic Signals (6 new + 13 mod)</td>
<td>$1,850,000</td>
<td>$2,475,000</td>
</tr>
<tr>
<td>Roadway Subtotal</td>
<td>$350,000</td>
<td>$500,000</td>
</tr>
<tr>
<td>Minor Items and Mobilization - 10%</td>
<td>$1,040,000</td>
<td>$1,537,000</td>
</tr>
<tr>
<td>Contingencies - 40%</td>
<td>$4,160,000</td>
<td>$6,150,000</td>
</tr>
<tr>
<td>Total Capital Construction Cost</td>
<td>$15,600,000</td>
<td>$23,062,500</td>
</tr>
<tr>
<td>Environmental Analyses</td>
<td>$500,000</td>
<td>$700,000</td>
</tr>
<tr>
<td>Preliminary Design - 5%</td>
<td>$780,000</td>
<td>$1,151,250</td>
</tr>
<tr>
<td>Final Design - 10%</td>
<td>$1,560,000</td>
<td>$2,206,250</td>
</tr>
<tr>
<td>Project Management - 5%</td>
<td>$780,000</td>
<td>$1,151,250</td>
</tr>
<tr>
<td>Construction Management - 12%</td>
<td>$1,872,000</td>
<td>$2,797,200</td>
</tr>
<tr>
<td>Professional Liability - 2.5%</td>
<td>$190,000</td>
<td>$279,100</td>
</tr>
<tr>
<td>Total Soft Costs</td>
<td>$5,882,000</td>
<td>$8,656,563</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$21,482,000</td>
<td>$31,719,063</td>
</tr>
</tbody>
</table>
Port Tidelands
Impacts of Sea Level Rise to Naval Facilities, Infrastructure and Mission
• Global sea levels are expected to rise between 0.2 meters and 2.0 meters by 2100.

• Coastal damage increases when waves and storm surge occur during high tides.

• NRSW Coastal installations are expected to experience damage from increased wave activity.

• Potential impacts to critical facilities and other infrastructure.
Existing Policies/Guidance

- UFC 2-100-01 Installation Master Planning (2012)
- DoD Climate Change Adaptation Roadmap (2014)
- DoD Directive 4715.21 Climate Change Adaptation and Resilience (2016)
- NAVFAC Navy Climate Change Installation Adaptation and Resilience Planning Handbook
Recently Completed Studies and Datasets

- ASN (Environment) has endorsed joint studies and data provided by:
 - Army Corps of Engineers (USACE);
 - National Oceanic and Atmospheric Administration (NOAA);
 - Navy Oceanography; and
 - Strategic Environmental Research and Development Program (SERDP)
Regionalized Sea Level Change & Extreme Water Level Scenarios

Online Graphical User Interface (GUI) User Guide

Naval Facilities Engineering Command

SERDP Scenarios

Case Studies – Inundation Mapping and Tidal Surface Considerations
- The Hall et al. (2006) report accompanying this database contains guidance on interpreting considerations related to inundation mapping error and tidal surface variation when analyzing the potential impact of SLR and EWL Scenarios.
- Section 4.5.3 and Section 5.2.3 contained associated discussion (See slide 7 for where to find the report)
Way Forward

• Utilize existing data sources to develop sea level rise scenarios for NRSW coastal installations.
• Conduct vulnerability and risk assessments.
• Establish protection, resiliency and adaptation strategies.
• Integrate into short, medium and long-range plans.
• Use updated design guidance for future construction.
• Engage with City of San Diego, City of Coronado, SANDAG, Port of San Diego, and other agencies to share efforts related to sea level rise.
• Partner with NOAA and Scripps to analyze impacts.
Memorandum of Agreement

First MOA between Navy and Port on the West Coast

- Appoint qualified staff to coordinate sea level rise planning initiatives.
- Share sea level rise policies, assessments, and guidance.
 - Re-evaluate science every five years.
 - Identify complimentary adaptation strategies.
 - Implement pilot projects as feasible.
Questions