Airport Connectivity Schedule

- Procurements Complete – February 2019
- Alternatives Development – February - March 2019
- RFI - Think Tank – March 2019
- Opportunities and Constraints Analysis – March 2019
- Decision Matrix for Airport and Grand Central Concepts – April 2019
- Modeling of Concepts – April 2019
- Review of Concepts with Airport Subcommittee – May 2019
- Airport Connectivity Subcommittee Selects a Concept for Further Development – June 2019
Preserves opportunities for numerous regional transit options (both near-term & long-term)

Represents the region’s commitment to proactively improve current connectivity to the airport

Thank you to our regional partners for participating in the creation of these discussion points
• Individual meetings with public agencies

• SANDAG’s Airport Connectivity Subcommittee & Working Groups
 - Planning
 - Legal
 - Communications
 - Government Affairs

• Over 30 meetings total since late October

OVERVIEW

• Transit-Ready Area in Terminals

• Long-Term Transit Options
 - Shared & Exclusive
 - East Routes
 - West Routes
 - Tunnels
 - Trolley
 - Gondola/Skyway

• Near-Term Transit Options

• Transportation Demand Mgmt.
POSSIBLE TRANSIT OPTIONS

Explore best practices & latest technologies

<table>
<thead>
<tr>
<th>Autonomous Shuttles / Group Rapid Transit</th>
<th>Self-Propelled APMs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIRPORT DEVELOPMENT PLAN

Proposed Terminal 1, Roadways, & Parking Plaza
TRANSIT-READY AREA

Reduction of Parking Plaza’s proposed size to create a “Transit-Ready Area”

*Equidistant from existing & proposed terminals

PRESERVE TRANSIT CONNECTION OPPORTUNITIES

LONG-TERM TRANSIT OPTION: SHARED TRANSIT R.O.W.
LONG-TERM TRANSIT OPTION:
SHARED TRANSIT R.O.W. FROM EAST

LONG-TERM TRANSIT OPTION:
EXCLUSIVE TRANSIT R.O.W. FROM EAST
Conceptual Alignment

Walking Distances:
T1 = 920 ft.
T2 = 680 ft.

PRESERVE TRANSIT CONNECTION OPPORTUNITIES

LONG-TERM TRANSIT OPTION:
EXCLUSIVE TRANSIT R.O.W. FROM EAST

PRESERVE TRANSIT CONNECTION OPPORTUNITIES

LONG-TERM TRANSIT OPTION:
EXCLUSIVE TRANSIT R.O.W. FROM WEST
PRESERVE TRANSIT CONNECTION OPPORTUNITIES

LONG-TERM TRANSIT OPTION: EXCLUSIVE TRANSIT R.O.W. FROM WEST

PRESERVE TRANSIT CONNECTION OPPORTUNITIES

LONG-TERM TRANSIT OPTION: EXCLUSIVE TRANSIT R.O.W. VIA TUNNEL
OTHER LONG-TERM OPTIONS: TROLLEY
Preserve Space for Other Potential Transit Connections (N. Harbor Drive Trolley)
OTHER LONG-TERM OPTIONS:
GONDOLA / SKYWAY
Preserve Space for Other Potential Transit Connections
From WSP – County of San Diego Study

Preserves opportunities for numerous regional transit options
NEAR-TERM TRANSIT OPTIONS
Transit Connection Improvements from the 2016 Airport Transit Plan:

- Launched Trolley to Terminals shuttle
- Increased marketing & installed MTS ticket machines in terminals
- Improve MTS Route 992 service & brand:
 Increase frequency from every 15 min. to 7.5 min.
 Reduce trip time with signal prioritization etc.
- Launch Old Town Transit Center shuttle

TRANSPORTATION DEMAND MANAGEMENT PROGRAM
Reducing or redistributing transportation demand to improve mobility & efficiency

Potential Strategies

- Employer network in SANDAG iCommute Program
- Transit & car/vanpool subsidies (or pre-tax deduction)
- Ground Transportation GHG Reduction Program
 (promote carpooling/reduce deadheading)
Next Steps
REQUEST TO COMMENT
This form will be included with the record of the meeting as a public document.

Date: Feb 5
Agenda Item #: 2
[] In Favor [] Opposed

Name to be called: Uwe Send
Representing: Self

Address (optional):

Phone (optional): Email (optional): usend@ucsd.edu

Request to Speak: [] Yes [] No
If you do not wish to speak, you may write any comments below:

__
__
__

Please Submit to the Clerk

SANDAG

REQUEST TO COMMENT
This form will be included with the record of the meeting as a public document.

Date: 2-5-19
Agenda Item #: 2
[] In Favor [] Opposed

Name to be called: Nicole Burgess
Representing: BikeSD

Address (optional):

Phone (optional): Email (optional):

Request to Speak: [] Yes [] No
If you do not wish to speak, you may write any comments below:

__
__
__

Please Submit to the Clerk

SANDAG
REQUEST TO COMMENT
This form will be included with the record of the meeting as a public document.

Date: 02/05/2019 Agenda Item #: 3 □ In Favor □ Opposed

Name to be called: Representing:

Address (optional):

Phone (optional): Email (optional):

Request to Speak: Yes □ No
If you do not wish to speak, you may write any comments below:

__

__

__

__

__

Please Submit to the Clerk

SANDAG
REQUEST TO COMMENT
This form will be included with the record of the meeting as a public document.

Date: 02/05/2019 Agenda Item #: 6 □ In Favor □ Opposed
Name to be called: Katheryn Rhodes Representing:
Address (optional):
Phone (optional): Email (optional):

Request to Speak: □ Yes □ No
If you do not wish to speak, you may write any comments below:

Please Submit to the Clerk

REQUEST TO COMMENT
This form will be included with the record of the meeting as a public document.

Date: 2-5-2019 Agenda Item #: 7 □ In Favor □ Opposed
Name to be called: Judi Tenstor Representing: BIKE SD
Address (optional):
Phone (optional): Email (optional): judi@bikeSD.org

Request to Speak: □ Yes □ No
If you do not wish to speak, you may write any comments below:

Efforts to mitigate/slow climate change should be rapid, implemented quickly and should be economical. Analysis should incorporate speed of implementation.

Please Submit to the Clerk
January 30, 2019

SANDAG Airport Connectivity Subcommittee
Meeting Date: February 5, 2019.

The La Playa Plan is a continuation of the 1908 and 1926 Nolan Plans, which established Lindbergh Field – San Diego International Airport (SDIA), regional transportation infrastructure, and public government buildings on our publically-owned Waterfront.

"John Nolen took the city to task for having a plan that was "not thoughtful, but, on the contrary, ignorant and wasteful."

https://archive.org/details/sandiegoacompre00nolegoog/page/n7
https://www.countynewscenter.com/before-waterfront-park-there-was-the-nolen-plan/

The Nolan Plan included a joint City and County of San Diego government headquarters along San Diego Bay. The San Diego County Administration Center (CAC) completed in 1938 was funded by President Franklin Delano Roosevelt’s (FDR) New Deal Program, the Works Progress Administration (WPA). The CAC building located at 1600 Pacific Highway used a structural bathtub foundation with two levels of subterranean basements, to get rid of the seismic hazard of liquefaction, and to protect against climate change. Due to porous Bulkheads, except for Port Headquarters at 3165 Pacific Highway, all other structures in the jurisdiction of the Airport and Port are founded on partially reclaimed lands, mostly on piles. Due to an extremely low water table, our State Tidelands are subject to flooding and chronic inundation, and prone to the seismic hazard of liquefaction. There is large potential for active fault rupture of the active Rose Canyon Fault Zone (RCFZ), which traverses the airport, and parallels Interstate 5 and Pacific Highway.

The La Playa Plan is part of the new Green New Deal (GND) for resource efficiency, which focuses on maximizing the use of our natural State Public Trust Tidelands for the financial benefit of all. The GND public works projects would create new jobs, combat climate change, build new subterranean space, recycle raw materials, while adapting partially reclaimed land for sea level rise, using the regional planning powers of SANDAG.

The La Playa Plan:

* Is a Full State Public Trust Tidelands Reclamation Project of the Airport, Port, and Midway corridor to create subsurface space (15 to 50 feet deep) to be used for multi-modal transportation system from the Mexico Border to La Jolla to reduce Green House Gases (GHS), create subterranean parking, and also serve as an Urban Storm Water Capture System.

* Includes establishment of a new United States U.S. Bulkhead Elevation for San Diego Bay. The porous U.S. Bulkhead Elevation was first established in 1850, and never changed. The engineering used on our State Public Trust Tidelands has not advanced in 169 years.
- Includes sea level rise adaptations and urban storm water capture using structural cistern bathtub foundations, waterproof and watertight bulkheads, and shipyard dry dock configurations. This proof of concept can be used at United States military installations subject to tidal influences. See Page 8 for a discussion on cisterns for arid climates.

- Removes the seismic hazard of liquefaction and recycles loose bay muds. Requires foundations to be embedded into competent formational soils, west of the railroad tracks.

- Allows mining of Mineral Resources in San Diego Bay. Sort and recycle minerals to create raw materials for construction of new subsurface space and regional beach sand replenishment programs. Our State Public Trust Tidelands are classified as Mineral Resource Zone MRZ-1 “Areas of No Mineral Resource Significance” for Urbanized areas. Requires the State Mines and Geology Board (SMGB) to re-analyze and potentially re-classify our public State Public Trust Tidelands as MRZ-2 instead.

- Confirms that San Diego International Airport (SDIA) is 1 of 12 Grandfathered Airports documented in the September 30, 2009 FAA Airport Compliance Manual guiding document. See Page 228 https://www.faa.gov/documentLibrary/media/Order/5190_6b.pdf Therefore, SDIA is allowed to divert billions in Airport Revenue off site. Specifically for transit to the airport or an Intermodal Terminal Center (ITC). Other Grandfathered Airports on State Tidelands include San Francisco, the Port Authority of New York and New Jersey (PANYNJ), Boston, Chicago, Washington DC, St. Louis, Denver, Hawaii, etc

- Advocates all CEQA-level Capital Improvement Programs (CIP) decisions of both the Airport and Port be made by our elected officials at SANDAG, our Metropolitan Planning Organization (MPO) through new State Legislation. Leaving daily operations to the Airport and Port Boards and staffs. Similar to the current SANDAG arrangements with Metropolitan Transit Service (MTS) and North County Transit District (NCTD) where Capital projects are approved and managed by SANDAG staff. With daily operations managed by transit staff after the completion of construction.

“La Playa” translates to “The Beach” in Spanish. In 1542, Juan Rodriguez Cabrillo sailed into San Diego Bay. At that time, the bay with silted up by San Diego River, and the low shallow draft did not allow for ship navigation. Therefore, Cabrillo had to drop his ship’s anchor near the mouth of the bay, and use rowboats to get to the shore at “La Playa” in Point Loma.

Both Old Town and La Playa neighborhoods were part of the original Pueblo Lands of San Diego and were subdivided in 1849, before California became a State in 1850. In 1850 the United States Army Corps of Engineers (USACE) started dredging San Diego Bay for navigation of ships, established the bay-wide US Bulkhead Elevation, and built porous Bulkheads. The partial reclamation project used the dredged material for ship navigation channels to create new fill lands for Lindbergh Field, Harbor Island, the Midway corridor including Naval Base Point Loma Old Town Complex (NBPL OTC), the Embarcadero, and expanded North Island for the US Navy.

Our public lands are regional assets that belong to the Citizens of the State of California. Despite their insistence, our State Public Trust Tidelands land assets are not owned by the
San Diego County Regional Airport Authority (SDCRAA), SDIA, the San Diego Unified Port District (SDUPD,) or their staff. San Diego has created a beautiful world-class public airport on our State Public Trust Tidelands by hoarding billions in public FAA Airport Revenue onsite, through political maneuvers and purposeful misrepresentation of Federal and State laws. Grandfathered FAA Airport Revenues are to be used for on- and off-site mitigation and regional transportation integration planning. Due to failure to finance mitigation projects including known traffic impacts of the Rental Car Center (RCC), the 2008 SDIA Airport Master Plan, and associated Final Environmental Impact Report (EIR) have been violated.

At the March 9, 2018 SANDAG Executive Committee, the SDCRAA and SANDAG legal staff both denied that SDIA has Grandfathered Airport Revenue status that allows the use of normally restricted Airport Revenues offsite. And that FAA has banned the Airport from using Revenue for offsite mitigation or transit projects to the airport. http://tinyurl.com/20180309a Audio Time 53-56 Minutes. https://sandag.org/index.asp?fuseaction=meetings.sc&mid=EC030918&cName=Executive%20Committee&mType=Regular%20Session&mDate=3/9/2018

By sharing the billions in FAA Airport Revenue wealth, and applying for State and Federal water reclamation funding to combat climate change, the San Diego Region can have a first class public transportation system that would allow SANDAG, CALTRANS, the Navy, the Port, and the Airport to fund new construction projects to meet their Green House Gas (GHG) reduction goals.

By the creation of new and free subsurface space though a full tidelands reclamation, the La Playa Plan could ultimately incorporate and fund all three Request for Information (RFI) Categories. Category 1 Automated People Mover (APM) or Similar Service. Category 2 San Diego Grand Central Station (SDGCS) Mobility Hub, and Category 3 Transportation System and Demand Management Technologies and Pricing Strategies.

Regards,

Katheryn Rhodes, PE
La Playa Heritage
371 San Fernando Street San Diego, California 92106
laplayaheritage@gmail.com (619) 402-8688 cell

Attachments:

Attachment C. April 2016, Excerpts from the Southern California Association of Governments (SCAG), Findings of Fact and a Statement of Overriding Considerations (FOFSOC) 2016-2040 Regional Transportation Plan Sustainable Communities Strategy (RTP SCS). http://scagrtpscs.net/Documents/2016/pf/final/2016fPEIR_ExhibitA_FOFSOC.pdf
SDIA Additional Fuel Tanks CEQA NOP Public Comments

Katheryn Rhodes <laplayaheritage@gmail.com>

Date: 12/28/2018 03:58PM
To: planning@san.org, tanasis@san.org

Hi SDIA, SDCRAA, and Mr. Ted Anasis:

Thank you for the opportunity to comment on this infrastructure project for the three, 1.15-million gallon, above-ground, 58 feet diameter, and 58 feet high Fuel Tanks.

This email serves as my official public comment. In the future please provide email addresses in the NOP, EIR, and CEQA documents for the public to use. Allow emails, instead of asking only for hardcopies of letters to be mailed or delivered. I do not have a printer.

Please confirm or deny active faulting at the CEQA Stage for the new and expanded Fuel Tanks through valid fault investigations turned into the State Geologist. Although the Airport is not within an Alquist-Priolo (A-P) Earthquake Hazard Zone, active faulting was confirmed at the east side of the Airport property as part of the Rental Car Center. Therefore active faulting through the whole of the Airport footprint on liquefiable soils should be investigated for the first time.

For the last 15 years, the active Fault Investigations and corresponding letters to the State Geologist to update the AP-Maps since 2003 have not been sent in accordance with State law PRC 2697. Please discuss how you will turn in all fault investigations into the State Geologist to update the old 2003 Point Loma Quadrangle AP-Maps, and confirm or deny active faulting in consultation with the State Geologist and SANDAG. Even though the Downtown Special Studies Zone and AP-Maps have Harbor Drive as their Northern Boundary, and stop abruptly at Airport property due to failure to send scientific planning evidence to the State.

Instead of above-ground tanks, unknown foundations, or a foundation on piles, please consider a bathtub structural foundation that gets rid of all liquefiable soil material so the structure can be founded on bedrock @ 30 to 40 feet below grade. So the top of the structures are not 58 feet above current grade. The partially below-grade Tanks would replace liquefiable soils and their foundations would be embedded into competent formational soils.

Bathtub foundations were used for the County Administration Center (CAC) and the Port Headquarters. And are planned for Manchester Pacific Gateway Navy Broadway Complex (NBC), and Seaport Village.

In addition, instead of only concrete containment dike walls between fuel container tanks, please consider using a watertight bulkhead configuration, similar to dry docks.

Regards,

Katheryn Rhodes
371 San Fernando Street
San Diego, California 92106>
619-402-8688
laplayaheritage@gmail.com
3.0 CISTERN STRUCTURAL FOUNDATION.

The report states the following: "Protecting and improving water quality in bays and at beaches should be a top priority... San Diego's beaches and bays are invaluable tools for promoting the city's economy... Water supply is a competitive deterrent for the entire region."

Cisterns have been used in arid desert climates like San Diego throughout recorded history in areas such as Morocco, Istanbul, Greece, and Africa to capture, collect, and clean water. Cisterns can be used to capture rain water and storm water; collect the first flush/rain urban storm water runoff to improve the water quality of our beaches and bays; and storage of clean water created through NASA's new forward osmosis process and desalination techniques. See Figure 5 for excerpts from the Wikipedia entry for Cisterns.

In order to stop water pollution from entering San Diego beaches and bays, Bioretention Basins and Oil/Grit Separators are required to capture urban storm water runoff, especially during the first flush and rains of the season. Water finds its way to the point of least resistance because of gravity. Therefore, urban storm water runoff should be captured at the lowest elevation possible which is sea level and areas of reclaimed Public Trust tidelands. See Figure 6 for areas of Undocumented Fill (Qf) shown in brown, in San Diego Bay, Mission Bay, and the Midway/Sports Arena area.

Instead of limiting the San Diego Convention Center Phase III Expansion project to existing reclaimed tidelands under the control of 5th Avenue Landing LLC; a new complex can be built upon a Cistern Structural Foundation instead of expensive and noisy driven piles on what now is water; east of the United States Bulkhead line in red. Our idea for a proposed multi-purpose NFL Chargers Stadium/Convention Center Phase II Expansion/Cistern Structural Foundation (NFLCS/CC/CSF) can be used as a test case for subterranean infrastructure projects in San Diego for future publically funded development projects. If proven to be cost effective and pay for itself, the idea of building Cisterns under new development projects on reclaimed tidelands to collect, capture, and clean urban storm water runoff can be used county-wide. The additional pre-designed subterranean Cisterns using a Bulkhead configuration can be built by the local shipyards. Proposed locations include the planned North Embarcadero Vision Plan (NEVP) project, the Chula Vista Bayfront Master Plan, the San Diego International Airport (SDIA) Lindbergh Field Intermodal Transportation Facility, and any future improvement to the city-owned Sports Arena and Qualcomm Stadium in Mission Valley. Liquefiable soils and differential settlement cause many water and sewer main breaks, which further erode San Diego's crumbling infrastructure.

The use of Cistern Structural Foundations will include the removal of compressible liquefiable soils so the foundation system of the Cistern underwater can be founded on hard formational soils. The use of water-proof Cisterns also reduces the need for expensive foundation system for high-rise, high-load structures on reclaimed tidelands, including stone columns and/or driven piles.
Underwater bathtub foundations are used in many international infrastructure projects, but not in San Diego. We believe this is due to the original Convention Center construction which includes a system to pump water continuously in order to keep the subterranean parking lots dry and in use. Due to the careless Engineering design of a non-waterproof bathtub foundation at the Convention Center which is costly to maintain; San Diego is afraid, with good cause, about building any infrastructure projects under Mean Sea Level in the Downtown Special Fault Study Zone, and in Alquist-Priolo Earthquake Fault Zones on Public Trust Tidelands. As such, Caltrans engineers should oversee the Cistern Structural Foundation, so the age-old idea can be used successfully in San Diego as a great example of Sustainable Green Design.

Water-tight Cisterns and underground vaults also stop drinking water from evaporating into the air. In San Diego we estimate that surface water reservoirs lose approximately 4 feet of water per year, due to evaporation and climate conditions. The cost to the San Diego region is hundreds of millions of dollars every year in water bought and paid for, then conveyed to surface from the Colorado River, to San Diego County surface water reservoirs and lakes. Where the expensive imported water evaporates into the air before the water can be used by citizens. Thus lowering San Diego’s Economic Competitiveness.
A cistern (Middle English cisterne, from Latin cisterna, from cista, box, from Greek kisté, basket) is a receptacle for holding liquids, usually water. Often cisterns are built to catch and store rainwater. They range in capacity from a few liters to thousands of cubic meters (effectively covered reservoirs).

Cisterns are commonly used in areas where water is scarce, either because it is rare or because it has been depleted due to heavy use. Early on, the water was used for many purposes including cooking, irrigation, and washing. Present day cisterns are often only used for irrigation due to concerns over water quality. Cisterns today can also be outfitted with filters or other water purification methods when the water is meant for consumption. It is not uncommon for cisterns to be open in some way in order to catch rain or to include more elaborate rain-catching systems. It is recommended in these cases to have a system that does not leave the water open to mosquitoes or algae, which are attracted to the water and then potentially carry disease to nearby humans.

Some cisterns sit on the top of houses or on the ground higher than the house, and supply the running water needs for the house. They are often supplied not by rainwater harvesting, but by wells with electric pumps, or are filled by manual labor or by truck delivery. Very common throughout Brazil, for instance, they were traditionally made of concrete walls (much like the houses, themselves), with a similar concrete top (about 5 cm. thick), with a piece that can come out for water filling and be re-inserted to keep out debris and insects. Modern cisterns are manufactured of plastic (in Brazil with a characteristic bright blue color, round, in capacities of about 10k and 50k liters). These cisterns differ from water tanks in the sense that they are not completely enclosed and sealed with one form, rather they have a lid made of the same material as the cistern, which is removable by user.

To keep a clean water supply, the cisterns must be kept clean. It is recommended to inspect them regularly, keep them well-enclosed, and to occasionally empty them and clean them with an appropriate dilution of chlorine and to rinse them well. Well water must be inspected for contaminants coming from the ground source. City water has up to 1 ppm (parts per million) chlorine added to the water to keep it clean, and in many areas can be ordered to be delivered directly to the cistern by truck (a typical price in Brazil is BRL50, USD$20 for 10k liters). If there is any question about the water supply at any point (source to tap), then the cistern water should not be used for drinking or cooking. If it is of acceptable quality and consistency, then it can be used for (1) toilets, and housecleaning; (2) showers and hand washing; (3) washing dishes, with appropriate sanitation methods, and for the highest quality, (4) cooking and drinking. Water of non-acceptable quality for the before mentioned uses may still be used for irrigation. If it is free of particulates but not low enough in bacteria, then boiling may also be an effective means to prepare the water for drinking.

Many greenhouses use cisterns to help meet their water needs, especially in the USA. Some countries or regions, such as Bermuda and the U.S. Virgin Islands have laws that require rainwater harvesting systems to be built alongside any new construction, and cisterns can be used in these cases. Other countries, such as Japan, Germany and Spain, also offer financial incentives or tax credit for installing cisterns. Cisterns may also be used to store water for firefighting in areas where there is an inadequate water supply.
Figure 6 – Reclaimed Public Trust Tidelands are shown in the color Brown as Quaternary Artificial Fill (Qaf).

The areas of undocumented fill (Qaf) in the City of San Diego includes Port tidelands around San Diego Bay, where the liquefiable soils can be replaced by Cistern Structural Foundations embedded into formational soils.

Proposed projects in the planning stage include the North Embarcadero Vision Plan (NEVP) project, the Chula Vista Bayfront Master Plan project, and the San Diego International Airport (SDIA)/Lindbergh Field Intermodal Transportation Center.

Future projects may include the city-owned Sports Arena in the Midway area, and the Kinder-Morgan Fuel spill at Qualcomm Stadium.

If our proposed water-proof subterranean multi-purpose NFL Chargers Stadium/ Convention Center Phase III Expansion/ Cistern Structural Foundation (NFLCS/CC/CSF) is built, then the great idea of using Cisterns under new development projects on reclaimed tidelands and liquefiable soils to collect, capture, and clean urban storm water runoff can be used county-wide as an example of Green Engineering Design.

Fault Investigations required prior to preparation of Project Designs. Not at the too late Building Permit Stage. Since no specific feasible mitigation measures or project alternatives have been found to reduce the impact to a less than significant level, this impact remains significant and unavoidable. The SCAG Regional Council finds that the significant impact is acceptable due to the overriding considerations that support adoption of the 2016 RTP/SCS, discussed in the Statement of Overriding Considerations.

SCAG Mitigation Measures Section VI. G. Geology and Soils.

MM-GEO-1(a): SCAG shall facilitate minimizing future impacts to geological resources from exposure of people or structures to potential substantial adverse effects involving including the risk of loss, injury, or death involving rupture of a known earthquake fault, strong seismic ground shaking, seismic-related ground failure including liquefaction, landslides; substantial soil erosion or loss of topsoil; off-site landslide, lateral spreading, subsidence, liquefaction, or collapse; and being located on an expansive soil through cooperation, information sharing, and regional program development as part of SCAG’s ongoing regional planning efforts. Such efforts shall include web-based planning tools for local government including CA LOTS, and other GIS tools and data services, including, but not limited to, Map Gallery, GIS library, and GIS applications, and direct technical assistance efforts such as Toolbox Tuesday Training series and sharing of associated online training materials. Resource agencies, such as the U.S. Geological Survey, shall be consulted during this update process. Consult the USGS for Seismic Mitigation measures and guidance. Plus consult State Geologist to update 1992 La Jolla and 2003 Point Loma Quad A-P Maps.

Project-Level Mitigation Measures

Lead to reconvene the 2006 Coronado Tunnel Study Caltrans Technical Advisory Panel (TAP) for the Rose Canyon Fault Zone (RCFZ). **MM-GEO-1(b):** Consistent with the provisions of Section 15091 of the State CEQA Guidelines, SCAG has identified mitigation measures capable of avoiding or reducing the significant effects on the potential for projects to result in the exposure of people and infrastructure to the effects of earthquakes, seismic related ground-failure, liquefaction, and seismically induced landslides, that are in the jurisdiction and responsibility of public agencies, regulatory agencies, and/or Lead Agencies. Where the Lead Agency has identified that a project has the potential for significant effects, the Lead Agency can and should consider mitigation measures to ensure compliance with County and City Public Works and Building and Safety Department Standards, the Uniform Building Code (UBC) and the California Building Code (CBC), and other applicable laws and regulations governing building standards, as applicable and feasible. Such measures may include the following, or other comparable measures identified by the Lead Agency:

- Regionally change State law from 50 foot Active Fault Buffer Setback Minimums, to 25 feet, by purposeful misinterpretation of State Seismic laws.
- Fault investigations and approvals should be conducted into the State Geologist to update old A-P Maps.
- Consistent with Section 4.7.2 of the Alquist-Priolo Earthquake Fault Zoning Act, conduct a geologic investigation to demonstrate that proposed buildings would not be constructed across active faults. An evaluation and written report of a specific site can and should be prepared by a licensed geologist. If an active fault is found and unfit for human occupancy over the fault, place a setback of 50 feet from the fault.
- Use site-specific fault identification investigations conducted by licensed geotechnical professionals in accordance with the requirements of the Alquist-Priolo Act, as well as any applicable Caltrans regulations that exceed or reasonably replace the requirements of the Act to either determine that the anticipated risk to people and property is at or below acceptable levels or site-specific measures have been incorporated into the project design, consistent with the CBC and UBC.
- Ensure that projects located within or across Alquist-Priolo Zones comply with design requirements provided in Special Publication 117, published by the California Geological Investigation required for Bridges in Transportation €1-51 projects in addition structures for human occupancy. Site-specific measure to be incorporated into the project designs. Therefore, fault investigations required early in design, and should not to wait until the Building Permit Stage. Which is too late and increases costs dramatically.
Use site-specific fault identification investigations conducted by licensed geotechnical professionals in accordance with the requirements of the Alquist-Priolo Act, as well as any applicable Caltrans regulations that exceed or reasonably replace the requirements of the Act to either determine that the anticipated risk to people and property is at or below acceptable levels or to incorporate site-specific measures into the project design, consistent with the CBC and UBC.

2016 RTP/SCS
Section VI
Findings of Fact and Statement of Overriding Considerations

Survey, as well as relevant local, regional, state, and federal design criteria for construction in seismic areas.

- Consistent with the CBC and local regulatory agencies with oversight of development associated with the Plan, ensure that projects are designed in accordance with county and city code requirements for seismic ground shaking. With respect to design, consider seismicity of the site, soil response at the site, and dynamic characteristics of the structure, in compliance with the appropriate California Building Code and State of California design standards for construction in or near fault zones, as well as all standard design, grading, and construction practices in order to avoid or reduce geologic hazards.

- Consistent with the CBC and local regulatory agencies with oversight of development associated with the Plan, ensure that site-specific geotechnical investigations conducted by a qualified geotechnical expert be required prior to preparation of project designs. These investigations shall identify areas of potential expansive soils and recommend remedial geotechnical measures to eliminate any problems. Recommended corrective measures, such as structural reinforcement and replacing soil with engineered fill, shall be implemented in project designs. Geotechnical investigations identify areas of potential failure and recommend remedial geotechnical measures to eliminate any problems.

- Adhere to design standards described in the CBC and all standard geotechnical investigation, design, grading, and construction practices to avoid or reduce impacts from earthquakes, ground shaking, ground failure, and landslides. Missing Active Fault Rupture.

- Consistent with the CBC and local regulatory agencies with oversight of development associated with the Plan, design projects to avoid geologic units or soils that are unstable, expansive soils and soils prone to lateral spreading, subsidence, liquefaction, or collapse wherever feasible.

Fault Investigations required prior to preparation of Project Designs. Not at the too late Building Permit Stage.

Impact GEO-2

Potential to result in substantial soil erosion or the loss of topsoil.

Impact:

Significant and Unavoidable

Finding:

Implementation of SCAG Mitigation Measure MM-GEO-1(a) and Project-Level Mitigation Measure MM-GEO-2(b) will reduce impacts related to the potential to result in substantial soil erosion or the loss of topsoil, to the maximum extent practicable and feasible. The SCAG Regional Council finds that significant and unavoidable impacts will remain after mitigation.

Rationale:

The above finding is made based on the analysis included in Section 3.7, Geology and Soils, of the PEIR. The potential to result in substantial soil erosion or the loss of topsoil would be significant. Implementation of
Questions:

1) The 2012 AMAP (SANDAG) seems to assume that in the long-term future all access to the airport (passenger access and processing, terminal facilities) will be from the North side. This assumption for example led to not carrying forward a study for a direct downtown-airport feeder service (since to the North side that is achieved by current Trolley lines). Given the new terminal 2 and 1 construction on the South side, is it now given/accepted that the passenger processing/terminals will remain on the South side in the long-term? I cannot find an explicit reference to such a decision. If not, is this a consensus which could be reached and formalized and published?

2) Is there an agreed list of requirements for the new desired transit connections to the airport? It would help to have those for objectively weighing and comparing different options.

3) Is there a “commute pattern” analysis for all traffic to/from the airport (including passengers and airport staff)? How many people travel from where in San Diego and San Diego County? This would help to design the most convenient and therefore hopefully most used transit connections.

Suggestions:

a) It appears that a direct connection from downtown (America Plaza/Santa Fe Depot) to the airport has not been formally studied. Reasons were either existence of Bus #992 or the expected North Side Terminal complex. A “fixed guideway system” over this 1.5 mile route may satisfy many of the requirements, and may be easier/cheaper to implement at least in the shorter term. It would be good to have a full study in hand to weigh the pros and cons.

b) Is it possible to consider a tiered approach? E.g. while a Grand Central is being planned and funded, as short-term and lower-cost connection to the new Terminal 1 station one might extend the existing Trolley lines from America Plaza by 1.5 miles to the airport.

c) Please make sure any solution considered will allow passengers to roll their luggage into the transit connector all the way to the airport, and if it is an APM then it should be of a type which allows passengers to take baggage carts into it (done at a variety of airports, and mentioned in ‘National Academy of Sciences’ study of People Mover systems).

d) The Portland airport MAX Light Rail may be a good example to look at (low-cost since all on level ground with road traffic, can roll luggage directly into it at the airport and out at any stop, goes directly to downtown). Since the “opportunities” section from past presentations had a nice collection of examples from other places, is it worth to make list of good (and bad) examples/ideas from other airports, to use in the planning effort here?