Briefing for:

Ad Hoc Airport Regional Policy Committee – Meeting 10

November 8, 2008

San Diego County Regional Airport Authority
City of San Diego
San Diego Association of Governments
Port of San Diego
County of San Diego
Metropolitan Transit System
North County Transit District
United States Department of Defense
This presentation has been prepared in advance of a meeting of the Ad Hoc Airport Regional Policy Committee.

Minor changes to the information contained herein may be made prior to the meeting.

This document contains concepts and analyses for consideration and discussion which will be used as context during the meeting. No decision regarding the implementation of these concepts has been made.
Agenda

1. Introduction
2. SANDAG forecast of Intermodal Transportation Center activity levels
3. Financial considerations and relevant case examples
4. Development alternatives evaluation
5. Conclusions and next steps
Introduction

- Workshop objectives
- Project background information
Today’s Workshop Objectives

- Review transit forecasts
- Consider financial aspects
- Review alternatives analysis
- Select preferred alternative concept(s)
SANDAG Forecast of Intermodal Transportation Center Activity Levels
Determining Transit Use for a Destination Lindbergh Intermodal Transportation Center (ITC)

November 2008
Key Questions

- What % of airport travelers would use transit to a new ITC?
- How many non-airport travelers would use a new ITC?
Approach

- Use of comparative analysis & peer group to forecast airport transit ITC Users

- Use of SANDAG model to forecast non-airport ITC users
Peer Group

- Matthew Coogan
 (Ground access researcher and transportation consultant)

- Geoffrey D. Gosling, Ph.D.
 (Principal, Aviation System Consulting)

- Russell Chisolm
 (President, Transportation Management and Design Inc.)
Implementation of an Intermodal Transportation Center should be based on:

- An objective of maximizing non-auto modes of travel to the airport
- Reducing surface traffic in and around the airport
- Development of a centralized airport passenger processing center that makes transit as competitive as the auto
- Development at the airport of an effective and useful air traveler transportation option information system
- Continued work toward modeling mode choice for the ITC option chosen
Elements of Comparison

To compare ground access at airports the following parameters were used:

- Size of airport operations (enplanements)
- Percentage of overall transit mode share used in other regions
- Operational characteristics of transit mode to various airports
- Percentage of rail, bus, shared ride van (where available)
- Distance to downtown
2030 Transit Network

- BRT and Commuter Rail
- Light Rail
- Arterial Rapid
- Local Services

2030 network enables “one-seat” transit ride to ITC from key regional travel corridors
Forecast ITC Airport Transit Trips by Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Current Percent</th>
<th>Forecast Percent</th>
<th>2030 Daily Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trolley</td>
<td>5-7%</td>
<td>3,800</td>
<td>5,200</td>
</tr>
<tr>
<td>COASTER/Amtrak</td>
<td>1-2%</td>
<td>800</td>
<td>1,600</td>
</tr>
<tr>
<td>BRT/Fly Away</td>
<td>1.3%</td>
<td>2-3%</td>
<td>1,600</td>
</tr>
<tr>
<td>Local Bus</td>
<td>.5-1%</td>
<td>400</td>
<td>800</td>
</tr>
<tr>
<td>Airport Employees</td>
<td>-</td>
<td>1,300</td>
<td>1,900*</td>
</tr>
</tbody>
</table>

Sub-Total Airport Trips

| | 1.3% | 8.5-13.0% | 7,900 | 11,700 |

| HSR Potential | 0% | 1-2% | 800 | 1,600 |
| Shared Ride Van | 8% | 6% | 3,600 | 3,600 |

Total Airport Trips

| | 9.3% | 15.5-21.0% | 12,300 | 16,900 |

* Assumes 17-25% of airport employees
West Coast Airport Intermodal Use

Transit Use Forecast
Forecast ITC Non-Airport Transit Trips by Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Daily Trips (2030)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COASTER</td>
<td>1,500</td>
</tr>
<tr>
<td>Trolley</td>
<td>9,900</td>
</tr>
<tr>
<td>BRT/Bus</td>
<td>3,800</td>
</tr>
<tr>
<td>Potential HSR</td>
<td>19,300*</td>
</tr>
</tbody>
</table>

Total 34,500

* HSR initial estimate Santa Fe Depot
Typical Daily Passenger Trip Activity at ITC

2030 Trips without HSR

<table>
<thead>
<tr>
<th>Activity</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport related trips</td>
<td>11,500</td>
<td>15,300</td>
</tr>
<tr>
<td>Non-airport related trips</td>
<td>15,200</td>
<td>15,200</td>
</tr>
<tr>
<td>Total trips</td>
<td>26,700</td>
<td>30,500</td>
</tr>
</tbody>
</table>

2030 Trips with HSR

<table>
<thead>
<tr>
<th>Activity</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport related trips</td>
<td>12,300</td>
<td>16,900</td>
</tr>
<tr>
<td>Non-airport related trips</td>
<td>34,500</td>
<td>34,500</td>
</tr>
<tr>
<td>Total trips</td>
<td>46,800</td>
<td>51,400</td>
</tr>
</tbody>
</table>
ITC Passenger Use by Alternative

Optimizing Transit (15.5 - 21.0%)

A2

- Maximizes non-auto modes of travel to the airport
- Competitive transit times through centralized airport passenger processing

B1
Reduced Transit (9 - 11%)

- Does not maximize advantage of non-auto mode travel to the airport
- Non-competitive transit times through dispersed airport passenger processing
Conclusions

- Development of an ITC creates an opportunity for increasing non-auto trips to the airport

- While the ITC would function effectively as a stand alone facility, its use is enhanced by its connectivity to the airport

- Based on forecast passenger trips it is likely the development of an ITC will have a substantial impact on reducing auto related VMT and GHG emissions
Conclusions (cont’d.)

- Transit and automobile gate access time needs to be competitive

- HSR offers an opportunity to increase non-auto trips to and from the airport and should be further evaluated as part of SANDAG’s and Airport Authority’s Regional Air-Rail Study
Future Analysis: How Do We Phase and Implement an ITC?

Transit Use Forecast

Preliminary

Conceptual Section
Intermodal Transit Center and Terminal
Questions?
Financial Considerations and Relevant Case Examples

- Relevant case examples
- Potential funding sources and opportunities
- Financial structure considerations
Miami Intermodal Center

Financial Considerations
Miami Intermodal Center

Key elements:
- A consolidated rental car (CONRAC) facility
 - Space for 6,500 cars; approximately 80 acres of garage space on 4 levels
- An intermodal center (Miami Central Station)
- A people mover (called “the Miami Mover”, to connect both the CONRAC and the station to the terminal complex at Miami International Airport)
- Forecast to accommodate 75,000 daily passengers at completion

Phasing:
- Consolidated rental car facility - Spring 2010
- Miami Central Station – 2012
- People mover (“Miami Mover”) - 2012

Sponsoring agencies:
- Project is being completed by the Florida Department of Transportation (DOT)
- Additional funding coming from Miami-Dade County International Airport Authority.
 - Customer facility charges (CFCs) for parking garage
 - Additional funds for people mover
Project cost:
- Project to cost $1.7 billion dollars (1995 construction dollars)

Plan of finance:
- Two loans, totaling approximately $540 million, from the Federal government, under the Transportation Infrastructure Financing and Innovation Act (TIFIA) state and local sources (City of Miami, Miami Dade County Airport Authority, Miami Dade Expressway Authority, Tri-Rail)
- Private sector fees and charges ($2.00 CFC, rental car commissions and rental of space)
- The people mover is being funded, in part, through the Airport’s Capital Improvement Program (CIP)
- Revenue streams Include CFCs, rentals revenues and parking revenues
A partnership between public agencies and private corporations financed in part by PFC revenues
Portland Airport “Max” Rail Line

- Key elements: 5 mile long light-rail extension of the Red Line from central Portland to PDX
- Phasing: Began operating in September 2001
- Sponsoring agencies:
 - Project was a Public/Private partnership between:
 - Tri-Country Metropolitan Transit District
 - The Port of Portland
 - The City of Portland
 - The Portland Development Commission
 - Bechtel Corporation
 - Bechtel (operating as the Cascade Station Development Co.) contributed $28.2 million to the project, in exchange for development rights on 120 acres of Port owned land adjacent to the Airport
 - Bechtel intends to develop a business, shopping and hotel complex on this land
Portland Airport “Max” Rail Line

- Project cost approximately $124 million, with all funds raised locally
- Plan of Finance:

<table>
<thead>
<tr>
<th>Agency</th>
<th>Charge Type</th>
<th>Amount ($millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port of Portland</td>
<td>Passenger Facility Charges (PFCs)</td>
<td>28.3</td>
</tr>
<tr>
<td>Tri-Met</td>
<td>General Fund</td>
<td>45.5</td>
</tr>
<tr>
<td>City of Portland</td>
<td>Urban Renewal/Tax Increment</td>
<td>23.0</td>
</tr>
<tr>
<td>Bechtel Corp. (Cascade Station Development Co.)</td>
<td></td>
<td>28.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>124.0</td>
</tr>
</tbody>
</table>